
What is the value of the integral \[\int\limits_0^\pi {\log {{\sin }^2}xdx} \]?
A. \[2\pi {\log _e}\left( {\dfrac{1}{2}} \right)\]
B. \[\pi {\log _e}2 + c\]
C. \[\dfrac{\pi }{2}{\log _e}\left( {\dfrac{1}{2}} \right) + c\]
D. None of these
Answer
163.5k+ views
Hint: Here, a definite integral is given. First, simplify the integral by using the property \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]. Rewrite \[{\sin ^2}x\] as \[{\left( {\sin x} \right)^2}\]. Then, apply the property of logarithm \[{\log _e}{\left( x \right)^n} = n{\log _e}\left( x \right)\] and simplify the term. After that, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and simplify the integral. Then, add both simplified integrals and solve them using the u-substitution method, trigonometric and logarithmic properties. In the end, apply the limits and get the required answer.
Formula Used\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \]
\[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
Complete step by step solution:The given definite integral us \[\int\limits_0^\pi {\log {{\sin }^2}xdx} \].
Let consider,
\[I = \int\limits_0^\pi {\log {{\sin }^2}xdx} \]
\[ \Rightarrow I = \int\limits_0^{2\dfrac{\pi }{2}} {\log {{\sin }^2}xdx} \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {\log {{\sin }^2}xdx} \]
Rewrite \[{\sin ^2}x\] as \[{\left( {\sin x} \right)^2}\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {\log {{\left( {\sin x} \right)}^2}dx} \]
Apply the logarithmic property \[{\log _e}{\left( x \right)^n} = n{\log _e}\left( x \right)\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {2\log \sin xdx} \]
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)dx} \]
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} + 4\int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x + \log \cos x} \right]dx} \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x\cos x} \right]dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x\cos x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2x - \log 2} \right]dx} \]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} } \right]\]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} } \right]\] \[.....\left( 3 \right)\]
Now substitute \[2x = u\] in the first integral.
Then, \[dx = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[x \to 0\], then \[u \to 0\]
As \[x \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 3 \right)\].
\[2I = 4\left[ {\dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} } \right]\]
Apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( x \right) = f\left( {2a - x} \right)\] on the first integral.
Here, \[\log \sin \left( {\pi - u} \right) = \log \sin u\] .
So, we get
\[ \Rightarrow 2I = 4\left[ {\dfrac{1}{2} \times 2\int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}} \right]\]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^\pi {\log \sin udu} - \dfrac{\pi }{2}\log 2} \right]\]
\[ \Rightarrow 2I = 4\int\limits_0^\pi {\log \sin udu} - \dfrac{{4\pi }}{2}\log 2\]
From equation \[\left( 1 \right)\], we get \[I = 4\int\limits_0^\pi {\log \sin udu} \].
\[ \Rightarrow 2I = I - 2\pi \log 2\]
\[ \Rightarrow I = - 2\pi \log 2\]
\[ \Rightarrow I = 2\pi \log {2^{ - 1}}\]
\[ \Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right)\]
Thus, \[\int\limits_0^\pi {\log {{\sin }^2}xdx} = 2\pi \log \left( {\dfrac{1}{2}} \right)\].
Option ‘A’ is correct
Note: Students get confused and try to solve the integral \[\int {\log {{\sin }^2}xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Formula Used\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \]
\[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
Complete step by step solution:The given definite integral us \[\int\limits_0^\pi {\log {{\sin }^2}xdx} \].
Let consider,
\[I = \int\limits_0^\pi {\log {{\sin }^2}xdx} \]
\[ \Rightarrow I = \int\limits_0^{2\dfrac{\pi }{2}} {\log {{\sin }^2}xdx} \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {\log {{\sin }^2}xdx} \]
Rewrite \[{\sin ^2}x\] as \[{\left( {\sin x} \right)^2}\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {\log {{\left( {\sin x} \right)}^2}dx} \]
Apply the logarithmic property \[{\log _e}{\left( x \right)^n} = n{\log _e}\left( x \right)\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {2\log \sin xdx} \]
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)dx} \]
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} + 4\int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x + \log \cos x} \right]dx} \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x\cos x} \right]dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x\cos x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2x - \log 2} \right]dx} \]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} } \right]\]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} } \right]\] \[.....\left( 3 \right)\]
Now substitute \[2x = u\] in the first integral.
Then, \[dx = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[x \to 0\], then \[u \to 0\]
As \[x \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 3 \right)\].
\[2I = 4\left[ {\dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} } \right]\]
Apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( x \right) = f\left( {2a - x} \right)\] on the first integral.
Here, \[\log \sin \left( {\pi - u} \right) = \log \sin u\] .
So, we get
\[ \Rightarrow 2I = 4\left[ {\dfrac{1}{2} \times 2\int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}} \right]\]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^\pi {\log \sin udu} - \dfrac{\pi }{2}\log 2} \right]\]
\[ \Rightarrow 2I = 4\int\limits_0^\pi {\log \sin udu} - \dfrac{{4\pi }}{2}\log 2\]
From equation \[\left( 1 \right)\], we get \[I = 4\int\limits_0^\pi {\log \sin udu} \].
\[ \Rightarrow 2I = I - 2\pi \log 2\]
\[ \Rightarrow I = - 2\pi \log 2\]
\[ \Rightarrow I = 2\pi \log {2^{ - 1}}\]
\[ \Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right)\]
Thus, \[\int\limits_0^\pi {\log {{\sin }^2}xdx} = 2\pi \log \left( {\dfrac{1}{2}} \right)\].
Option ‘A’ is correct
Note: Students get confused and try to solve the integral \[\int {\log {{\sin }^2}xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
