
What is the value of the integral \[\int\limits_0^\pi {\log {{\sin }^2}xdx} \]?
A. \[2\pi {\log _e}\left( {\dfrac{1}{2}} \right)\]
B. \[\pi {\log _e}2 + c\]
C. \[\dfrac{\pi }{2}{\log _e}\left( {\dfrac{1}{2}} \right) + c\]
D. None of these
Answer
161.1k+ views
Hint: Here, a definite integral is given. First, simplify the integral by using the property \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]. Rewrite \[{\sin ^2}x\] as \[{\left( {\sin x} \right)^2}\]. Then, apply the property of logarithm \[{\log _e}{\left( x \right)^n} = n{\log _e}\left( x \right)\] and simplify the term. After that, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and simplify the integral. Then, add both simplified integrals and solve them using the u-substitution method, trigonometric and logarithmic properties. In the end, apply the limits and get the required answer.
Formula Used\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \]
\[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
Complete step by step solution:The given definite integral us \[\int\limits_0^\pi {\log {{\sin }^2}xdx} \].
Let consider,
\[I = \int\limits_0^\pi {\log {{\sin }^2}xdx} \]
\[ \Rightarrow I = \int\limits_0^{2\dfrac{\pi }{2}} {\log {{\sin }^2}xdx} \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {\log {{\sin }^2}xdx} \]
Rewrite \[{\sin ^2}x\] as \[{\left( {\sin x} \right)^2}\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {\log {{\left( {\sin x} \right)}^2}dx} \]
Apply the logarithmic property \[{\log _e}{\left( x \right)^n} = n{\log _e}\left( x \right)\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {2\log \sin xdx} \]
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)dx} \]
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} + 4\int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x + \log \cos x} \right]dx} \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x\cos x} \right]dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x\cos x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2x - \log 2} \right]dx} \]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} } \right]\]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} } \right]\] \[.....\left( 3 \right)\]
Now substitute \[2x = u\] in the first integral.
Then, \[dx = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[x \to 0\], then \[u \to 0\]
As \[x \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 3 \right)\].
\[2I = 4\left[ {\dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} } \right]\]
Apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( x \right) = f\left( {2a - x} \right)\] on the first integral.
Here, \[\log \sin \left( {\pi - u} \right) = \log \sin u\] .
So, we get
\[ \Rightarrow 2I = 4\left[ {\dfrac{1}{2} \times 2\int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}} \right]\]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^\pi {\log \sin udu} - \dfrac{\pi }{2}\log 2} \right]\]
\[ \Rightarrow 2I = 4\int\limits_0^\pi {\log \sin udu} - \dfrac{{4\pi }}{2}\log 2\]
From equation \[\left( 1 \right)\], we get \[I = 4\int\limits_0^\pi {\log \sin udu} \].
\[ \Rightarrow 2I = I - 2\pi \log 2\]
\[ \Rightarrow I = - 2\pi \log 2\]
\[ \Rightarrow I = 2\pi \log {2^{ - 1}}\]
\[ \Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right)\]
Thus, \[\int\limits_0^\pi {\log {{\sin }^2}xdx} = 2\pi \log \left( {\dfrac{1}{2}} \right)\].
Option ‘A’ is correct
Note: Students get confused and try to solve the integral \[\int {\log {{\sin }^2}xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Formula Used\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \]
\[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
Complete step by step solution:The given definite integral us \[\int\limits_0^\pi {\log {{\sin }^2}xdx} \].
Let consider,
\[I = \int\limits_0^\pi {\log {{\sin }^2}xdx} \]
\[ \Rightarrow I = \int\limits_0^{2\dfrac{\pi }{2}} {\log {{\sin }^2}xdx} \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {\log {{\sin }^2}xdx} \]
Rewrite \[{\sin ^2}x\] as \[{\left( {\sin x} \right)^2}\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {\log {{\left( {\sin x} \right)}^2}dx} \]
Apply the logarithmic property \[{\log _e}{\left( x \right)^n} = n{\log _e}\left( x \right)\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {2\log \sin xdx} \]
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)dx} \]
\[ \Rightarrow I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} + 4\int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x + \log \cos x} \right]dx} \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x\cos x} \right]dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x\cos x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = 4\int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2x - \log 2} \right]dx} \]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} } \right]\]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} } \right]\] \[.....\left( 3 \right)\]
Now substitute \[2x = u\] in the first integral.
Then, \[dx = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[x \to 0\], then \[u \to 0\]
As \[x \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 3 \right)\].
\[2I = 4\left[ {\dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} } \right]\]
Apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( x \right) = f\left( {2a - x} \right)\] on the first integral.
Here, \[\log \sin \left( {\pi - u} \right) = \log \sin u\] .
So, we get
\[ \Rightarrow 2I = 4\left[ {\dfrac{1}{2} \times 2\int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}} \right]\]
\[ \Rightarrow 2I = 4\left[ {\int\limits_0^\pi {\log \sin udu} - \dfrac{\pi }{2}\log 2} \right]\]
\[ \Rightarrow 2I = 4\int\limits_0^\pi {\log \sin udu} - \dfrac{{4\pi }}{2}\log 2\]
From equation \[\left( 1 \right)\], we get \[I = 4\int\limits_0^\pi {\log \sin udu} \].
\[ \Rightarrow 2I = I - 2\pi \log 2\]
\[ \Rightarrow I = - 2\pi \log 2\]
\[ \Rightarrow I = 2\pi \log {2^{ - 1}}\]
\[ \Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right)\]
Thus, \[\int\limits_0^\pi {\log {{\sin }^2}xdx} = 2\pi \log \left( {\dfrac{1}{2}} \right)\].
Option ‘A’ is correct
Note: Students get confused and try to solve the integral \[\int {\log {{\sin }^2}xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
