
What is the value of the integral \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\]?
A. \[\dfrac{\pi }{2}\]
B. \[\dfrac{\pi }{4}\]
C. \[\dfrac{\pi }{6}\]
D. 1
Answer
162.3k+ views
Hint: Here, a definite integral is given. First, simplify the given integral by using the basic trigonometric ratio. Then, simplify the integral by using the integral rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and trigonometric identities. After that, add this integral with the given integral and simplify it. Then, solve the integral using the integration formulas. In the end, apply the upper and lower limits to get the value of the given integral.
Formula Used:\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration rule: \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
The sum rule of integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\], where \[n\] is a number.
Complete step by step solution:The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\].
Let consider,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\]
Simplify the equation by using the trigonometric ratio \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the right-hand side.
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}} dx\]
Apply the properties of the trigonometric function \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] and \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }} + \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {dx} \]
Solve the integral by applying the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Therefore, \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx = \dfrac{\pi }{4}\].
Option ‘B’ is correct
Note: The other way to solve the given integral is:
Directly apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\], without converting the trigonometric function \[\tan x\] in the basic trigonometric ratio \[\dfrac{{\sin x}}{{\cos x}}\]. After that, follow the above steps and calculate the value of the definite integral.
Formula Used:\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration rule: \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
The sum rule of integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\], where \[n\] is a number.
Complete step by step solution:The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\].
Let consider,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\]
Simplify the equation by using the trigonometric ratio \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the right-hand side.
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}} dx\]
Apply the properties of the trigonometric function \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] and \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }} + \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {dx} \]
Solve the integral by applying the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Therefore, \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx = \dfrac{\pi }{4}\].
Option ‘B’ is correct
Note: The other way to solve the given integral is:
Directly apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\], without converting the trigonometric function \[\tan x\] in the basic trigonometric ratio \[\dfrac{{\sin x}}{{\cos x}}\]. After that, follow the above steps and calculate the value of the definite integral.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
