
What is the value of the integral \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\]?
A. \[\dfrac{\pi }{2}\]
B. \[\dfrac{\pi }{4}\]
C. \[\dfrac{\pi }{6}\]
D. 1
Answer
216.3k+ views
Hint: Here, a definite integral is given. First, simplify the given integral by using the basic trigonometric ratio. Then, simplify the integral by using the integral rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and trigonometric identities. After that, add this integral with the given integral and simplify it. Then, solve the integral using the integration formulas. In the end, apply the upper and lower limits to get the value of the given integral.
Formula Used:\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration rule: \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
The sum rule of integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\], where \[n\] is a number.
Complete step by step solution:The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\].
Let consider,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\]
Simplify the equation by using the trigonometric ratio \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the right-hand side.
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}} dx\]
Apply the properties of the trigonometric function \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] and \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }} + \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {dx} \]
Solve the integral by applying the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Therefore, \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx = \dfrac{\pi }{4}\].
Option ‘B’ is correct
Note: The other way to solve the given integral is:
Directly apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\], without converting the trigonometric function \[\tan x\] in the basic trigonometric ratio \[\dfrac{{\sin x}}{{\cos x}}\]. After that, follow the above steps and calculate the value of the definite integral.
Formula Used:\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration rule: \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
The sum rule of integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\], where \[n\] is a number.
Complete step by step solution:The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\].
Let consider,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\]
Simplify the equation by using the trigonometric ratio \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the right-hand side.
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}} dx\]
Apply the properties of the trigonometric function \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] and \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }} + \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {dx} \]
Solve the integral by applying the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Therefore, \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx = \dfrac{\pi }{4}\].
Option ‘B’ is correct
Note: The other way to solve the given integral is:
Directly apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\], without converting the trigonometric function \[\tan x\] in the basic trigonometric ratio \[\dfrac{{\sin x}}{{\cos x}}\]. After that, follow the above steps and calculate the value of the definite integral.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

