
What is the value of the integral \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\]?
A. \[\dfrac{\pi }{2}\]
B. \[\dfrac{\pi }{4}\]
C. \[\dfrac{\pi }{6}\]
D. 1
Answer
164.4k+ views
Hint: Here, a definite integral is given. First, simplify the given integral by using the basic trigonometric ratio. Then, simplify the integral by using the integral rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and trigonometric identities. After that, add this integral with the given integral and simplify it. Then, solve the integral using the integration formulas. In the end, apply the upper and lower limits to get the value of the given integral.
Formula Used:\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration rule: \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
The sum rule of integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\], where \[n\] is a number.
Complete step by step solution:The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\].
Let consider,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\]
Simplify the equation by using the trigonometric ratio \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the right-hand side.
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}} dx\]
Apply the properties of the trigonometric function \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] and \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }} + \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {dx} \]
Solve the integral by applying the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Therefore, \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx = \dfrac{\pi }{4}\].
Option ‘B’ is correct
Note: The other way to solve the given integral is:
Directly apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\], without converting the trigonometric function \[\tan x\] in the basic trigonometric ratio \[\dfrac{{\sin x}}{{\cos x}}\]. After that, follow the above steps and calculate the value of the definite integral.
Formula Used:\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration rule: \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
The sum rule of integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\], where \[n\] is a number.
Complete step by step solution:The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\].
Let consider,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx\]
Simplify the equation by using the trigonometric ratio \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the right-hand side.
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}} dx\]
Apply the properties of the trigonometric function \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] and \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx\]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }} + \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {dx} \]
Solve the integral by applying the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Therefore, \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{1}{{1 + \sqrt {\tan x} }}} dx = \dfrac{\pi }{4}\].
Option ‘B’ is correct
Note: The other way to solve the given integral is:
Directly apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\], without converting the trigonometric function \[\tan x\] in the basic trigonometric ratio \[\dfrac{{\sin x}}{{\cos x}}\]. After that, follow the above steps and calculate the value of the definite integral.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
