
What is the value of the integral \[\int\limits_0^{2\pi } {{{\cos }^{99}}xdx} \]?
A. 1
B. \[ - 1\]
C. \[99\]
D. 0
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, simplify the integral by applying the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]. Then, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and simplify the integral. After that, add both integrals and solve it to get the required answer.
Formula Used:Integration rules:
\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2\pi } {{{\cos }^{99}}xdx} \].
Let consider,
\[I = \int\limits_0^{2\pi } {{{\cos }^{99}}xdx} \]
Simplify the integral by applying the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[I = 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \] \[.....\left( 1 \right)\]
Now apply the integration rule\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
We get,
\[I = 2\int\limits_0^\pi {{{\cos }^{99}}\left( {\pi - x} \right)dx} \]
Apply the trigonometric formula \[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\].
\[ \Rightarrow I = 2\int\limits_0^\pi { - {{\cos }^{99}}xdx} \]
\[ \Rightarrow I = - 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = 2\int\limits_0^\pi {{{\cos }^{99}}xdx} - 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \]
\[ \Rightarrow 2I = 0\]
\[ \Rightarrow I = 0\]
Therefore, \[\int\limits_0^{2\pi } {{{\cos }^{99}}xdx} = 0\].
Option ‘D’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric functions.
The formulas are as follows:
\[{\sin ^n}\left( {\pi - \theta } \right) = {\sin ^n}\theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\]
\[{\tan ^n}\left( {\pi - \theta } \right) = {\left( { - \tan \theta } \right)^n}\]
Formula Used:Integration rules:
\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2\pi } {{{\cos }^{99}}xdx} \].
Let consider,
\[I = \int\limits_0^{2\pi } {{{\cos }^{99}}xdx} \]
Simplify the integral by applying the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[I = 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \] \[.....\left( 1 \right)\]
Now apply the integration rule\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
We get,
\[I = 2\int\limits_0^\pi {{{\cos }^{99}}\left( {\pi - x} \right)dx} \]
Apply the trigonometric formula \[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\].
\[ \Rightarrow I = 2\int\limits_0^\pi { - {{\cos }^{99}}xdx} \]
\[ \Rightarrow I = - 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = 2\int\limits_0^\pi {{{\cos }^{99}}xdx} - 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \]
\[ \Rightarrow 2I = 0\]
\[ \Rightarrow I = 0\]
Therefore, \[\int\limits_0^{2\pi } {{{\cos }^{99}}xdx} = 0\].
Option ‘D’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric functions.
The formulas are as follows:
\[{\sin ^n}\left( {\pi - \theta } \right) = {\sin ^n}\theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\]
\[{\tan ^n}\left( {\pi - \theta } \right) = {\left( { - \tan \theta } \right)^n}\]
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

