
What is the value of the integral \[\int\limits_0^{2\pi } {{{\cos }^{99}}xdx} \]?
A. 1
B. \[ - 1\]
C. \[99\]
D. 0
Answer
216.3k+ views
Hint: Here, a definite integral is given. First, simplify the integral by applying the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]. Then, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and simplify the integral. After that, add both integrals and solve it to get the required answer.
Formula Used:Integration rules:
\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2\pi } {{{\cos }^{99}}xdx} \].
Let consider,
\[I = \int\limits_0^{2\pi } {{{\cos }^{99}}xdx} \]
Simplify the integral by applying the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[I = 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \] \[.....\left( 1 \right)\]
Now apply the integration rule\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
We get,
\[I = 2\int\limits_0^\pi {{{\cos }^{99}}\left( {\pi - x} \right)dx} \]
Apply the trigonometric formula \[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\].
\[ \Rightarrow I = 2\int\limits_0^\pi { - {{\cos }^{99}}xdx} \]
\[ \Rightarrow I = - 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = 2\int\limits_0^\pi {{{\cos }^{99}}xdx} - 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \]
\[ \Rightarrow 2I = 0\]
\[ \Rightarrow I = 0\]
Therefore, \[\int\limits_0^{2\pi } {{{\cos }^{99}}xdx} = 0\].
Option ‘D’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric functions.
The formulas are as follows:
\[{\sin ^n}\left( {\pi - \theta } \right) = {\sin ^n}\theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\]
\[{\tan ^n}\left( {\pi - \theta } \right) = {\left( { - \tan \theta } \right)^n}\]
Formula Used:Integration rules:
\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2\pi } {{{\cos }^{99}}xdx} \].
Let consider,
\[I = \int\limits_0^{2\pi } {{{\cos }^{99}}xdx} \]
Simplify the integral by applying the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[I = 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \] \[.....\left( 1 \right)\]
Now apply the integration rule\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
We get,
\[I = 2\int\limits_0^\pi {{{\cos }^{99}}\left( {\pi - x} \right)dx} \]
Apply the trigonometric formula \[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\].
\[ \Rightarrow I = 2\int\limits_0^\pi { - {{\cos }^{99}}xdx} \]
\[ \Rightarrow I = - 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = 2\int\limits_0^\pi {{{\cos }^{99}}xdx} - 2\int\limits_0^\pi {{{\cos }^{99}}xdx} \]
\[ \Rightarrow 2I = 0\]
\[ \Rightarrow I = 0\]
Therefore, \[\int\limits_0^{2\pi } {{{\cos }^{99}}xdx} = 0\].
Option ‘D’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric functions.
The formulas are as follows:
\[{\sin ^n}\left( {\pi - \theta } \right) = {\sin ^n}\theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\]
\[{\tan ^n}\left( {\pi - \theta } \right) = {\left( { - \tan \theta } \right)^n}\]
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

