
What is the value of the integral \[\int\limits_{ - 1}^1 {{{\sin }^{11}}x} dx\]?
A. \[\dfrac{{10}}{{11}} \cdot \dfrac{8}{9} \cdot \dfrac{6}{7} \cdot \dfrac{4}{5} \cdot \dfrac{2}{3}\]
B. \[\dfrac{{10}}{{11}} \cdot \dfrac{8}{9} \cdot \dfrac{6}{7} \cdot \dfrac{4}{5} \cdot \dfrac{2}{3} \cdot \dfrac{\pi }{2}\]
C. 1
D. 0
Answer
163.5k+ views
Hint: Here, a definite integral is given. First, check whether the function present in the integral is an even or an odd function. If the function is odd, then the value of that integral is 0. If the function is even, then solve the integral by applying the integration rule \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\]. In the end, simplify the integral to get the required answer.
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{ - 1}^1 {{{\sin }^{11}}x} dx\].
Let consider,
\[f\left( x \right) = {\sin ^{11}}x\]
Now we have to check whether the above function is an odd function or an even function.
So, let’s calculate the value of \[f\left( { - x} \right)\].
\[f\left( { - x} \right) = {\sin ^{11}}\left( { - x} \right)\]
Apply the trigonometric identity \[{\sin ^n}\left( { - x} \right) = {\left( { - \sin x} \right)^n}\].
\[f\left( { - x} \right) = {\left( { - \sin x} \right)^{11}}\]
Since, \[11\] is an odd number.
So, we get
\[f\left( { - x} \right) = - {\sin ^{11}}x\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
Therefore, the function \[f\left( x \right) = {\sin ^{11}}x\] is an odd function.
Now apply the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function.
We get,
\[\int\limits_{ - 1}^1 {{{\sin }^{11}}x} dx = 0\]
Option ‘D’ is correct
Note: Sometimes students get confused and write \[{\sin ^n}\left( { - x} \right) = {\left( {\sin x} \right)^n}\]. Which is a wrong formula. Because of that, \[{\sin ^{11}}x\] will be considered as an even function and they get a different solution. The correct formula is \[{\sin ^n}\left( { - x} \right) = {\left( { - \sin x} \right)^n}\].
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{ - 1}^1 {{{\sin }^{11}}x} dx\].
Let consider,
\[f\left( x \right) = {\sin ^{11}}x\]
Now we have to check whether the above function is an odd function or an even function.
So, let’s calculate the value of \[f\left( { - x} \right)\].
\[f\left( { - x} \right) = {\sin ^{11}}\left( { - x} \right)\]
Apply the trigonometric identity \[{\sin ^n}\left( { - x} \right) = {\left( { - \sin x} \right)^n}\].
\[f\left( { - x} \right) = {\left( { - \sin x} \right)^{11}}\]
Since, \[11\] is an odd number.
So, we get
\[f\left( { - x} \right) = - {\sin ^{11}}x\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
Therefore, the function \[f\left( x \right) = {\sin ^{11}}x\] is an odd function.
Now apply the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function.
We get,
\[\int\limits_{ - 1}^1 {{{\sin }^{11}}x} dx = 0\]
Option ‘D’ is correct
Note: Sometimes students get confused and write \[{\sin ^n}\left( { - x} \right) = {\left( {\sin x} \right)^n}\]. Which is a wrong formula. Because of that, \[{\sin ^{11}}x\] will be considered as an even function and they get a different solution. The correct formula is \[{\sin ^n}\left( { - x} \right) = {\left( { - \sin x} \right)^n}\].
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
