
What is the value of the definite integration \[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \]?
A. \[\dfrac{1}{3}\]
B. \[\dfrac{{14}}{3}\]
C. \[\dfrac{7}{3}\]
D. \[\dfrac{{28}}{3}\]
Answer
164.1k+ views
Hint: First we will find the interval where the value \[\left| {1 - {x^2}} \right|\] is positive and negative. Then rewrite the integration as sum of integration. After that integrate it to get the value of \[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \].
Formula Used:Property of definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where \[b < c < a\]
Complete step by step solution:Given definite integration is \[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \]
Case 1: When \[1 - {x^2} < 0\]
\[1 - {x^2} < 0\]
Subtract from 1 both sides
\[ \Rightarrow - {x^2} < - 1\]
\[ \Rightarrow {x^2} > 1\]
\[ \Rightarrow x > 1\] or \[x < - 1\]
Case 1: When \[1 - {x^2} > 0\]
\[1 - {x^2} > 0\]
Subtract from 1 both sides
\[ \Rightarrow - {x^2} > - 1\]
\[ \Rightarrow {x^2} < 1\]
\[ \Rightarrow - 1 < x < 1\]
Now we will decide the positive and negative of \[\left| {1 - {x^2}} \right|\] in the interval \[\left( { - 2,3} \right)\]
We know that the value of \[1 - {x^2}\] is less than zero when \[x > 1\] or \[x < - 1\].
In other words \[1 - {x^2}\] is less than zero when \[1 < x < 3\] or \[ - 2 < x < - 1\]
We know that the value of \[1 - {x^2}\] is greater than zero when \[ - 1 < x < 1\]
Now we will rewrite the given definite integral as sum of three integrations. The limits of the first integration will be -2 to -1, limits of the second integration will be -1 to 1, and limits of the third integration will be 1 to 3.
\[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \]
\[ = \int_{ - 2}^{ - 1} { - \left( {1 - {x^2}} \right)dx} + \int_{ - 1}^1 {\left( {1 - {x^2}} \right)dx} + \int_1^3 { - \left( {1 - {x^2}} \right)dx} \]
Now applying integration formula:
\[ = - \left[ {x - \dfrac{{{x^3}}}{3}} \right]_{ - 2}^{ - 1} + \left[ {x - \dfrac{{{x^3}}}{3}} \right]_{ - 1}^1 + \left[ { - x + \dfrac{{{x^3}}}{3}} \right]_1^3\]
\[ = - \left[ { - 1 - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \left( { - 2 - \dfrac{{{{\left( { - 2} \right)}^3}}}{3}} \right)} \right] + \left[ {1 - \dfrac{{{1^3}}}{3} - \left( { - 1 - \dfrac{{{{\left( { - 1} \right)}^3}}}{3}} \right)} \right] + \left[ { - 3 + \dfrac{{{3^3}}}{3} - \left( { - 1 + \dfrac{{{1^3}}}{3}} \right)} \right]\]
\[ = - \left[ { - 1 + \dfrac{1}{3} + 2 - \dfrac{8}{3}} \right] + \left[ {1 - \dfrac{{{1^3}}}{3} + 1 - \dfrac{1}{3}} \right] + \left[ { - 3 + 9 + 1 - \dfrac{1}{3}} \right]\]
\[ = - \left[ {1 - \dfrac{7}{3}} \right] + \left[ {2 - \dfrac{2}{3}} \right] + \left[ {7 - \dfrac{1}{3}} \right]\]
\[ = - 1 + \dfrac{7}{3} + 2 - \dfrac{2}{3} + 7 - \dfrac{1}{3}\]
\[ = 8 + \dfrac{4}{3}\]
\[ = \dfrac{{28}}{3}\]
Option ‘D’ is correct
Note: Students often make mistake to solve the given integration. They do not consider the negative value of \[\left| {1 - {x^2}} \right|\]. They integrate \[\int_{ - 2}^3 {\left( {1 - {x^2}} \right)dx} \] and get incorrect solution. Here we find the intervals where \[\left| {1 - {x^2}} \right|\] is positive and negative. After that rewrite the integration as sum of integrations and solve it to reach correct solution.
Formula Used:Property of definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where \[b < c < a\]
Complete step by step solution:Given definite integration is \[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \]
Case 1: When \[1 - {x^2} < 0\]
\[1 - {x^2} < 0\]
Subtract from 1 both sides
\[ \Rightarrow - {x^2} < - 1\]
\[ \Rightarrow {x^2} > 1\]
\[ \Rightarrow x > 1\] or \[x < - 1\]
Case 1: When \[1 - {x^2} > 0\]
\[1 - {x^2} > 0\]
Subtract from 1 both sides
\[ \Rightarrow - {x^2} > - 1\]
\[ \Rightarrow {x^2} < 1\]
\[ \Rightarrow - 1 < x < 1\]
Now we will decide the positive and negative of \[\left| {1 - {x^2}} \right|\] in the interval \[\left( { - 2,3} \right)\]
We know that the value of \[1 - {x^2}\] is less than zero when \[x > 1\] or \[x < - 1\].
In other words \[1 - {x^2}\] is less than zero when \[1 < x < 3\] or \[ - 2 < x < - 1\]
We know that the value of \[1 - {x^2}\] is greater than zero when \[ - 1 < x < 1\]
Now we will rewrite the given definite integral as sum of three integrations. The limits of the first integration will be -2 to -1, limits of the second integration will be -1 to 1, and limits of the third integration will be 1 to 3.
\[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \]
\[ = \int_{ - 2}^{ - 1} { - \left( {1 - {x^2}} \right)dx} + \int_{ - 1}^1 {\left( {1 - {x^2}} \right)dx} + \int_1^3 { - \left( {1 - {x^2}} \right)dx} \]
Now applying integration formula:
\[ = - \left[ {x - \dfrac{{{x^3}}}{3}} \right]_{ - 2}^{ - 1} + \left[ {x - \dfrac{{{x^3}}}{3}} \right]_{ - 1}^1 + \left[ { - x + \dfrac{{{x^3}}}{3}} \right]_1^3\]
\[ = - \left[ { - 1 - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \left( { - 2 - \dfrac{{{{\left( { - 2} \right)}^3}}}{3}} \right)} \right] + \left[ {1 - \dfrac{{{1^3}}}{3} - \left( { - 1 - \dfrac{{{{\left( { - 1} \right)}^3}}}{3}} \right)} \right] + \left[ { - 3 + \dfrac{{{3^3}}}{3} - \left( { - 1 + \dfrac{{{1^3}}}{3}} \right)} \right]\]
\[ = - \left[ { - 1 + \dfrac{1}{3} + 2 - \dfrac{8}{3}} \right] + \left[ {1 - \dfrac{{{1^3}}}{3} + 1 - \dfrac{1}{3}} \right] + \left[ { - 3 + 9 + 1 - \dfrac{1}{3}} \right]\]
\[ = - \left[ {1 - \dfrac{7}{3}} \right] + \left[ {2 - \dfrac{2}{3}} \right] + \left[ {7 - \dfrac{1}{3}} \right]\]
\[ = - 1 + \dfrac{7}{3} + 2 - \dfrac{2}{3} + 7 - \dfrac{1}{3}\]
\[ = 8 + \dfrac{4}{3}\]
\[ = \dfrac{{28}}{3}\]
Option ‘D’ is correct
Note: Students often make mistake to solve the given integration. They do not consider the negative value of \[\left| {1 - {x^2}} \right|\]. They integrate \[\int_{ - 2}^3 {\left( {1 - {x^2}} \right)dx} \] and get incorrect solution. Here we find the intervals where \[\left| {1 - {x^2}} \right|\] is positive and negative. After that rewrite the integration as sum of integrations and solve it to reach correct solution.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
