
What is the value of the definite integration \[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \]?
A. \[\dfrac{1}{3}\]
B. \[\dfrac{{14}}{3}\]
C. \[\dfrac{7}{3}\]
D. \[\dfrac{{28}}{3}\]
Answer
216k+ views
Hint: First we will find the interval where the value \[\left| {1 - {x^2}} \right|\] is positive and negative. Then rewrite the integration as sum of integration. After that integrate it to get the value of \[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \].
Formula Used:Property of definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where \[b < c < a\]
Complete step by step solution:Given definite integration is \[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \]
Case 1: When \[1 - {x^2} < 0\]
\[1 - {x^2} < 0\]
Subtract from 1 both sides
\[ \Rightarrow - {x^2} < - 1\]
\[ \Rightarrow {x^2} > 1\]
\[ \Rightarrow x > 1\] or \[x < - 1\]
Case 1: When \[1 - {x^2} > 0\]
\[1 - {x^2} > 0\]
Subtract from 1 both sides
\[ \Rightarrow - {x^2} > - 1\]
\[ \Rightarrow {x^2} < 1\]
\[ \Rightarrow - 1 < x < 1\]
Now we will decide the positive and negative of \[\left| {1 - {x^2}} \right|\] in the interval \[\left( { - 2,3} \right)\]
We know that the value of \[1 - {x^2}\] is less than zero when \[x > 1\] or \[x < - 1\].
In other words \[1 - {x^2}\] is less than zero when \[1 < x < 3\] or \[ - 2 < x < - 1\]
We know that the value of \[1 - {x^2}\] is greater than zero when \[ - 1 < x < 1\]
Now we will rewrite the given definite integral as sum of three integrations. The limits of the first integration will be -2 to -1, limits of the second integration will be -1 to 1, and limits of the third integration will be 1 to 3.
\[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \]
\[ = \int_{ - 2}^{ - 1} { - \left( {1 - {x^2}} \right)dx} + \int_{ - 1}^1 {\left( {1 - {x^2}} \right)dx} + \int_1^3 { - \left( {1 - {x^2}} \right)dx} \]
Now applying integration formula:
\[ = - \left[ {x - \dfrac{{{x^3}}}{3}} \right]_{ - 2}^{ - 1} + \left[ {x - \dfrac{{{x^3}}}{3}} \right]_{ - 1}^1 + \left[ { - x + \dfrac{{{x^3}}}{3}} \right]_1^3\]
\[ = - \left[ { - 1 - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \left( { - 2 - \dfrac{{{{\left( { - 2} \right)}^3}}}{3}} \right)} \right] + \left[ {1 - \dfrac{{{1^3}}}{3} - \left( { - 1 - \dfrac{{{{\left( { - 1} \right)}^3}}}{3}} \right)} \right] + \left[ { - 3 + \dfrac{{{3^3}}}{3} - \left( { - 1 + \dfrac{{{1^3}}}{3}} \right)} \right]\]
\[ = - \left[ { - 1 + \dfrac{1}{3} + 2 - \dfrac{8}{3}} \right] + \left[ {1 - \dfrac{{{1^3}}}{3} + 1 - \dfrac{1}{3}} \right] + \left[ { - 3 + 9 + 1 - \dfrac{1}{3}} \right]\]
\[ = - \left[ {1 - \dfrac{7}{3}} \right] + \left[ {2 - \dfrac{2}{3}} \right] + \left[ {7 - \dfrac{1}{3}} \right]\]
\[ = - 1 + \dfrac{7}{3} + 2 - \dfrac{2}{3} + 7 - \dfrac{1}{3}\]
\[ = 8 + \dfrac{4}{3}\]
\[ = \dfrac{{28}}{3}\]
Option ‘D’ is correct
Note: Students often make mistake to solve the given integration. They do not consider the negative value of \[\left| {1 - {x^2}} \right|\]. They integrate \[\int_{ - 2}^3 {\left( {1 - {x^2}} \right)dx} \] and get incorrect solution. Here we find the intervals where \[\left| {1 - {x^2}} \right|\] is positive and negative. After that rewrite the integration as sum of integrations and solve it to reach correct solution.
Formula Used:Property of definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where \[b < c < a\]
Complete step by step solution:Given definite integration is \[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \]
Case 1: When \[1 - {x^2} < 0\]
\[1 - {x^2} < 0\]
Subtract from 1 both sides
\[ \Rightarrow - {x^2} < - 1\]
\[ \Rightarrow {x^2} > 1\]
\[ \Rightarrow x > 1\] or \[x < - 1\]
Case 1: When \[1 - {x^2} > 0\]
\[1 - {x^2} > 0\]
Subtract from 1 both sides
\[ \Rightarrow - {x^2} > - 1\]
\[ \Rightarrow {x^2} < 1\]
\[ \Rightarrow - 1 < x < 1\]
Now we will decide the positive and negative of \[\left| {1 - {x^2}} \right|\] in the interval \[\left( { - 2,3} \right)\]
We know that the value of \[1 - {x^2}\] is less than zero when \[x > 1\] or \[x < - 1\].
In other words \[1 - {x^2}\] is less than zero when \[1 < x < 3\] or \[ - 2 < x < - 1\]
We know that the value of \[1 - {x^2}\] is greater than zero when \[ - 1 < x < 1\]
Now we will rewrite the given definite integral as sum of three integrations. The limits of the first integration will be -2 to -1, limits of the second integration will be -1 to 1, and limits of the third integration will be 1 to 3.
\[\int_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} \]
\[ = \int_{ - 2}^{ - 1} { - \left( {1 - {x^2}} \right)dx} + \int_{ - 1}^1 {\left( {1 - {x^2}} \right)dx} + \int_1^3 { - \left( {1 - {x^2}} \right)dx} \]
Now applying integration formula:
\[ = - \left[ {x - \dfrac{{{x^3}}}{3}} \right]_{ - 2}^{ - 1} + \left[ {x - \dfrac{{{x^3}}}{3}} \right]_{ - 1}^1 + \left[ { - x + \dfrac{{{x^3}}}{3}} \right]_1^3\]
\[ = - \left[ { - 1 - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \left( { - 2 - \dfrac{{{{\left( { - 2} \right)}^3}}}{3}} \right)} \right] + \left[ {1 - \dfrac{{{1^3}}}{3} - \left( { - 1 - \dfrac{{{{\left( { - 1} \right)}^3}}}{3}} \right)} \right] + \left[ { - 3 + \dfrac{{{3^3}}}{3} - \left( { - 1 + \dfrac{{{1^3}}}{3}} \right)} \right]\]
\[ = - \left[ { - 1 + \dfrac{1}{3} + 2 - \dfrac{8}{3}} \right] + \left[ {1 - \dfrac{{{1^3}}}{3} + 1 - \dfrac{1}{3}} \right] + \left[ { - 3 + 9 + 1 - \dfrac{1}{3}} \right]\]
\[ = - \left[ {1 - \dfrac{7}{3}} \right] + \left[ {2 - \dfrac{2}{3}} \right] + \left[ {7 - \dfrac{1}{3}} \right]\]
\[ = - 1 + \dfrac{7}{3} + 2 - \dfrac{2}{3} + 7 - \dfrac{1}{3}\]
\[ = 8 + \dfrac{4}{3}\]
\[ = \dfrac{{28}}{3}\]
Option ‘D’ is correct
Note: Students often make mistake to solve the given integration. They do not consider the negative value of \[\left| {1 - {x^2}} \right|\]. They integrate \[\int_{ - 2}^3 {\left( {1 - {x^2}} \right)dx} \] and get incorrect solution. Here we find the intervals where \[\left| {1 - {x^2}} \right|\] is positive and negative. After that rewrite the integration as sum of integrations and solve it to reach correct solution.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

