
What is the value of the definite integral is \[\int\limits_0^3 {\left| {2 - x} \right|} dx\]?
A. \[\dfrac{2}{7}\]
B. \[\dfrac{5}{2}\]
C. \[\dfrac{3}{2}\]
D. \[ - \dfrac{3}{2}\]
Answer
163.2k+ views
Hint: Here, a definite integral is given. The function present in the integral is an absolute value function. First, apply the absolute function formula that is \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]. Then, break the interval for the absolute value function. After that, solve the integrals. In the end, apply the limits and solve it to get the required answer.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^3 {\left| {2 - x} \right|} dx\].
Let consider,
\[I = \int\limits_0^3 {\left| {2 - x} \right|} dx\]
Substitute \[x = 2 - x\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if 2 - x < 0}\\{2 - x,}&{if 2 - x \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if x > 2}\\{2 - x,}&{if x \le 2}\end{array}} \right.\]
The interval of the integration is 0 to 3.
This implies that \[\left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if 2 < x < 3}\\{2 - x,}&{if 0 < x \le 2}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^2 {\left( {2 - x} \right)} dx + \int\limits_2^3 { - \left( {2 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^2 {\left( {2 - x} \right)} dx + \int\limits_2^3 {\left( {x - 2} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {2x - \dfrac{{{x^2}}}{2}} \right]_0^2 + \left[ {\dfrac{{{x^2}}}{2} - 2x} \right]_2^3\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {2\left( 2 \right) - \dfrac{{{2^2}}}{2}} \right) - \left( {2\left( 0 \right) - \dfrac{{{0^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{3^2}}}{2} - 2\left( 3 \right)} \right) - \left( {\dfrac{{{2^2}}}{2} - 2\left( 2 \right)} \right)} \right]\]
\[ \Rightarrow I = \left( {4 - 2} \right) + \left( {\dfrac{9}{2} - 6} \right) - \left( {2 - 4} \right)\]
\[ \Rightarrow I = 2 - \dfrac{3}{2} + 2\]
\[ \Rightarrow I = 4 - \dfrac{3}{2}\]
\[ \Rightarrow I = \dfrac{5}{2}\]
Thus, \[\int\limits_0^3 {\left| {2 - x} \right|} dx = \dfrac{5}{2}\].
Option ‘B’ is correct
Note: Students often make mistake while calculating the intervals of the absolute value function. Because of the negative sign in \[ - \left( {2 - x} \right)\], the considered this value is true for \[x \le 2\]. Which is wrong.So, calculate the interval by following the above steps.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^3 {\left| {2 - x} \right|} dx\].
Let consider,
\[I = \int\limits_0^3 {\left| {2 - x} \right|} dx\]
Substitute \[x = 2 - x\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if 2 - x < 0}\\{2 - x,}&{if 2 - x \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if x > 2}\\{2 - x,}&{if x \le 2}\end{array}} \right.\]
The interval of the integration is 0 to 3.
This implies that \[\left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if 2 < x < 3}\\{2 - x,}&{if 0 < x \le 2}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^2 {\left( {2 - x} \right)} dx + \int\limits_2^3 { - \left( {2 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^2 {\left( {2 - x} \right)} dx + \int\limits_2^3 {\left( {x - 2} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {2x - \dfrac{{{x^2}}}{2}} \right]_0^2 + \left[ {\dfrac{{{x^2}}}{2} - 2x} \right]_2^3\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {2\left( 2 \right) - \dfrac{{{2^2}}}{2}} \right) - \left( {2\left( 0 \right) - \dfrac{{{0^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{3^2}}}{2} - 2\left( 3 \right)} \right) - \left( {\dfrac{{{2^2}}}{2} - 2\left( 2 \right)} \right)} \right]\]
\[ \Rightarrow I = \left( {4 - 2} \right) + \left( {\dfrac{9}{2} - 6} \right) - \left( {2 - 4} \right)\]
\[ \Rightarrow I = 2 - \dfrac{3}{2} + 2\]
\[ \Rightarrow I = 4 - \dfrac{3}{2}\]
\[ \Rightarrow I = \dfrac{5}{2}\]
Thus, \[\int\limits_0^3 {\left| {2 - x} \right|} dx = \dfrac{5}{2}\].
Option ‘B’ is correct
Note: Students often make mistake while calculating the intervals of the absolute value function. Because of the negative sign in \[ - \left( {2 - x} \right)\], the considered this value is true for \[x \le 2\]. Which is wrong.So, calculate the interval by following the above steps.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
