
What is the value of the definite integral is \[\int\limits_0^3 {\left| {2 - x} \right|} dx\]?
A. \[\dfrac{2}{7}\]
B. \[\dfrac{5}{2}\]
C. \[\dfrac{3}{2}\]
D. \[ - \dfrac{3}{2}\]
Answer
216.3k+ views
Hint: Here, a definite integral is given. The function present in the integral is an absolute value function. First, apply the absolute function formula that is \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]. Then, break the interval for the absolute value function. After that, solve the integrals. In the end, apply the limits and solve it to get the required answer.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^3 {\left| {2 - x} \right|} dx\].
Let consider,
\[I = \int\limits_0^3 {\left| {2 - x} \right|} dx\]
Substitute \[x = 2 - x\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if 2 - x < 0}\\{2 - x,}&{if 2 - x \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if x > 2}\\{2 - x,}&{if x \le 2}\end{array}} \right.\]
The interval of the integration is 0 to 3.
This implies that \[\left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if 2 < x < 3}\\{2 - x,}&{if 0 < x \le 2}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^2 {\left( {2 - x} \right)} dx + \int\limits_2^3 { - \left( {2 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^2 {\left( {2 - x} \right)} dx + \int\limits_2^3 {\left( {x - 2} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {2x - \dfrac{{{x^2}}}{2}} \right]_0^2 + \left[ {\dfrac{{{x^2}}}{2} - 2x} \right]_2^3\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {2\left( 2 \right) - \dfrac{{{2^2}}}{2}} \right) - \left( {2\left( 0 \right) - \dfrac{{{0^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{3^2}}}{2} - 2\left( 3 \right)} \right) - \left( {\dfrac{{{2^2}}}{2} - 2\left( 2 \right)} \right)} \right]\]
\[ \Rightarrow I = \left( {4 - 2} \right) + \left( {\dfrac{9}{2} - 6} \right) - \left( {2 - 4} \right)\]
\[ \Rightarrow I = 2 - \dfrac{3}{2} + 2\]
\[ \Rightarrow I = 4 - \dfrac{3}{2}\]
\[ \Rightarrow I = \dfrac{5}{2}\]
Thus, \[\int\limits_0^3 {\left| {2 - x} \right|} dx = \dfrac{5}{2}\].
Option ‘B’ is correct
Note: Students often make mistake while calculating the intervals of the absolute value function. Because of the negative sign in \[ - \left( {2 - x} \right)\], the considered this value is true for \[x \le 2\]. Which is wrong.So, calculate the interval by following the above steps.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^3 {\left| {2 - x} \right|} dx\].
Let consider,
\[I = \int\limits_0^3 {\left| {2 - x} \right|} dx\]
Substitute \[x = 2 - x\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if 2 - x < 0}\\{2 - x,}&{if 2 - x \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if x > 2}\\{2 - x,}&{if x \le 2}\end{array}} \right.\]
The interval of the integration is 0 to 3.
This implies that \[\left| {2 - x} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {2 - x} \right),}&{if 2 < x < 3}\\{2 - x,}&{if 0 < x \le 2}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^2 {\left( {2 - x} \right)} dx + \int\limits_2^3 { - \left( {2 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^2 {\left( {2 - x} \right)} dx + \int\limits_2^3 {\left( {x - 2} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {2x - \dfrac{{{x^2}}}{2}} \right]_0^2 + \left[ {\dfrac{{{x^2}}}{2} - 2x} \right]_2^3\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {2\left( 2 \right) - \dfrac{{{2^2}}}{2}} \right) - \left( {2\left( 0 \right) - \dfrac{{{0^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{3^2}}}{2} - 2\left( 3 \right)} \right) - \left( {\dfrac{{{2^2}}}{2} - 2\left( 2 \right)} \right)} \right]\]
\[ \Rightarrow I = \left( {4 - 2} \right) + \left( {\dfrac{9}{2} - 6} \right) - \left( {2 - 4} \right)\]
\[ \Rightarrow I = 2 - \dfrac{3}{2} + 2\]
\[ \Rightarrow I = 4 - \dfrac{3}{2}\]
\[ \Rightarrow I = \dfrac{5}{2}\]
Thus, \[\int\limits_0^3 {\left| {2 - x} \right|} dx = \dfrac{5}{2}\].
Option ‘B’ is correct
Note: Students often make mistake while calculating the intervals of the absolute value function. Because of the negative sign in \[ - \left( {2 - x} \right)\], the considered this value is true for \[x \le 2\]. Which is wrong.So, calculate the interval by following the above steps.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

