
What is the value of the definite integral \[\int\limits_0^\pi {{{\sin }^2}} xdx\]?
A. \[\pi \]
B. \[\dfrac{\pi }{2}\]
C. 0
D. None of these
Answer
161.1k+ views
Hint: Here, a definite integral is given. First, simplify the given integral \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]. Then, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and simplify it. After that, add both integrals and apply the sum rule of integration to simplify it. Solve the term by applying the trigonometric property \[{\sin ^2}x + {\cos ^2}x = 1\]. Then, solve the integral by applying the integration formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]. In the end, apply the limits and get the required answer.
Formula Used:\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^\pi {{{\sin }^2}} xdx\].
Let consider,
\[I = \int\limits_0^\pi {{{\sin }^2}} xdx\]
\[ \Rightarrow I = \int\limits_0^{2\dfrac{\pi }{2}} {{{\sin }^2}} xdx\]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx\] \[.....\left( 1 \right)\]
So, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the equation \[\left( 1 \right)\].
We get,
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} \left( {\dfrac{\pi }{2} - x} \right)dx\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx + 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\]
Apply the sum rule of the integration.
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} {\left[ {{{\sin }^2}x + {{\cos }^2}x} \right]} dx\]
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
Solve the integral by applying the formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\] .
\[ \Rightarrow I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits.
\[ \Rightarrow I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, \[\int\limits_0^\pi {{{\sin }^2}} xdx = \dfrac{\pi }{2}\].
Option ‘B’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\cos ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\sin ^n}\theta \]
\[{\sin ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\cos ^n}\theta \]
Formula Used:\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^\pi {{{\sin }^2}} xdx\].
Let consider,
\[I = \int\limits_0^\pi {{{\sin }^2}} xdx\]
\[ \Rightarrow I = \int\limits_0^{2\dfrac{\pi }{2}} {{{\sin }^2}} xdx\]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx\] \[.....\left( 1 \right)\]
So, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the equation \[\left( 1 \right)\].
We get,
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} \left( {\dfrac{\pi }{2} - x} \right)dx\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx + 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\]
Apply the sum rule of the integration.
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} {\left[ {{{\sin }^2}x + {{\cos }^2}x} \right]} dx\]
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
Solve the integral by applying the formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\] .
\[ \Rightarrow I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits.
\[ \Rightarrow I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, \[\int\limits_0^\pi {{{\sin }^2}} xdx = \dfrac{\pi }{2}\].
Option ‘B’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\cos ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\sin ^n}\theta \]
\[{\sin ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\cos ^n}\theta \]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic
