
What is the value of the definite integral \[\int\limits_0^\pi {{{\sin }^2}} xdx\]?
A. \[\pi \]
B. \[\dfrac{\pi }{2}\]
C. 0
D. None of these
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, simplify the given integral \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]. Then, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and simplify it. After that, add both integrals and apply the sum rule of integration to simplify it. Solve the term by applying the trigonometric property \[{\sin ^2}x + {\cos ^2}x = 1\]. Then, solve the integral by applying the integration formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]. In the end, apply the limits and get the required answer.
Formula Used:\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^\pi {{{\sin }^2}} xdx\].
Let consider,
\[I = \int\limits_0^\pi {{{\sin }^2}} xdx\]
\[ \Rightarrow I = \int\limits_0^{2\dfrac{\pi }{2}} {{{\sin }^2}} xdx\]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx\] \[.....\left( 1 \right)\]
So, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the equation \[\left( 1 \right)\].
We get,
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} \left( {\dfrac{\pi }{2} - x} \right)dx\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx + 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\]
Apply the sum rule of the integration.
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} {\left[ {{{\sin }^2}x + {{\cos }^2}x} \right]} dx\]
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
Solve the integral by applying the formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\] .
\[ \Rightarrow I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits.
\[ \Rightarrow I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, \[\int\limits_0^\pi {{{\sin }^2}} xdx = \dfrac{\pi }{2}\].
Option ‘B’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\cos ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\sin ^n}\theta \]
\[{\sin ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\cos ^n}\theta \]
Formula Used:\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^\pi {{{\sin }^2}} xdx\].
Let consider,
\[I = \int\limits_0^\pi {{{\sin }^2}} xdx\]
\[ \Rightarrow I = \int\limits_0^{2\dfrac{\pi }{2}} {{{\sin }^2}} xdx\]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx\] \[.....\left( 1 \right)\]
So, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the equation \[\left( 1 \right)\].
We get,
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} \left( {\dfrac{\pi }{2} - x} \right)dx\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx + 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\]
Apply the sum rule of the integration.
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} {\left[ {{{\sin }^2}x + {{\cos }^2}x} \right]} dx\]
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
Solve the integral by applying the formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\] .
\[ \Rightarrow I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits.
\[ \Rightarrow I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, \[\int\limits_0^\pi {{{\sin }^2}} xdx = \dfrac{\pi }{2}\].
Option ‘B’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\cos ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\sin ^n}\theta \]
\[{\sin ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\cos ^n}\theta \]
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

