
What is the value of the definite integral \[\int\limits_0^\pi {{{\sin }^2}} xdx\]?
A. \[\pi \]
B. \[\dfrac{\pi }{2}\]
C. 0
D. None of these
Answer
162.9k+ views
Hint: Here, a definite integral is given. First, simplify the given integral \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]. Then, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and simplify it. After that, add both integrals and apply the sum rule of integration to simplify it. Solve the term by applying the trigonometric property \[{\sin ^2}x + {\cos ^2}x = 1\]. Then, solve the integral by applying the integration formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]. In the end, apply the limits and get the required answer.
Formula Used:\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^\pi {{{\sin }^2}} xdx\].
Let consider,
\[I = \int\limits_0^\pi {{{\sin }^2}} xdx\]
\[ \Rightarrow I = \int\limits_0^{2\dfrac{\pi }{2}} {{{\sin }^2}} xdx\]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx\] \[.....\left( 1 \right)\]
So, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the equation \[\left( 1 \right)\].
We get,
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} \left( {\dfrac{\pi }{2} - x} \right)dx\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx + 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\]
Apply the sum rule of the integration.
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} {\left[ {{{\sin }^2}x + {{\cos }^2}x} \right]} dx\]
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
Solve the integral by applying the formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\] .
\[ \Rightarrow I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits.
\[ \Rightarrow I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, \[\int\limits_0^\pi {{{\sin }^2}} xdx = \dfrac{\pi }{2}\].
Option ‘B’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\cos ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\sin ^n}\theta \]
\[{\sin ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\cos ^n}\theta \]
Formula Used:\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^\pi {{{\sin }^2}} xdx\].
Let consider,
\[I = \int\limits_0^\pi {{{\sin }^2}} xdx\]
\[ \Rightarrow I = \int\limits_0^{2\dfrac{\pi }{2}} {{{\sin }^2}} xdx\]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx\] \[.....\left( 1 \right)\]
So, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] on the equation \[\left( 1 \right)\].
We get,
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} \left( {\dfrac{\pi }{2} - x} \right)dx\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = 2\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}} xdx + 2\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} xdx\]
Apply the sum rule of the integration.
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} {\left[ {{{\sin }^2}x + {{\cos }^2}x} \right]} dx\]
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx\]
Solve the integral by applying the formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\] .
\[ \Rightarrow I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits.
\[ \Rightarrow I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, \[\int\limits_0^\pi {{{\sin }^2}} xdx = \dfrac{\pi }{2}\].
Option ‘B’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\cos ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\sin ^n}\theta \]
\[{\sin ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\cos ^n}\theta \]
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
