
What is the value of the definite integral \[\int\limits_0^8 {\left| {x - 5} \right|} dx\]?
A. \[17\]
B. \[12\]
C. 9
D. \[18\]
Answer
164.7k+ views
Hint: Here, a definite integral is given. The function present in the integral is an absolute value function. First, apply the absolute function formula that is \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]. Then, break the interval for the absolute value function. After that, solve the integrals. In the end, apply the limits and solve it to get the required answer.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^8 {\left| {x - 5} \right|} dx\].
Let consider,
\[I = \int\limits_0^8 {\left| {x - 5} \right|} dx\]
Substitute \[x = x - 5\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {x - 5} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 5} \right),}&{if x - 5 < 0}\\{x - 5,}&{if x - 5 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {x - 5} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 5} \right),}&{if x < 5}\\{x - 5,}&{if x \ge 5}\end{array}} \right.\]
The interval of the integration is 0 to 8.
This implies that \[\left| {x - 5} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 5} \right),}&{if 0 < x < 5}\\{x - 5,}&{if 5 \le x < 8}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^5 { - \left( {x - 5} \right)} dx + \int\limits_5^8 {\left( {x - 5} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^5 {\left( {5 - x} \right)} dx + \int\limits_5^8 {\left( {x - 5} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {5x - \dfrac{{{x^2}}}{2}} \right]_0^5 + \left[ {\dfrac{{{x^2}}}{2} - 5x} \right]_5^8\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {5\left( 5 \right) - \dfrac{{{5^2}}}{2}} \right) - \left( {5\left( 0 \right) - \dfrac{{{0^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{8^2}}}{2} - 5\left( 8 \right)} \right) - \left( {\dfrac{{{5^2}}}{2} - 5\left( 5 \right)} \right)} \right]\]
\[ \Rightarrow I = \left( {25 - \dfrac{{25}}{2}} \right) + \left( {\dfrac{{64}}{2} - 40} \right) - \left( {\dfrac{{25}}{2} - 25} \right)\]
\[ \Rightarrow I = \dfrac{{50 - 25}}{2} + \dfrac{{64 - 80}}{2} - \dfrac{{25 - 50}}{2}\]
\[ \Rightarrow I = \dfrac{{25}}{2} - \dfrac{{16}}{2} + \dfrac{{25}}{2}\]
\[ \Rightarrow I = 25 - 8\]
\[ \Rightarrow I = 17\]
Thus, \[\int\limits_0^8 {\left| {x - 5} \right|} dx = 17\].
Option ‘A’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {{x^n}dx} \]. They apply the formula \[\int\limits_a^b {{x^n}dx = \left[ {{x^{n + 1}}} \right]} _a^b\] which is an incorrect formula. The correct formula is \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^8 {\left| {x - 5} \right|} dx\].
Let consider,
\[I = \int\limits_0^8 {\left| {x - 5} \right|} dx\]
Substitute \[x = x - 5\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {x - 5} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 5} \right),}&{if x - 5 < 0}\\{x - 5,}&{if x - 5 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {x - 5} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 5} \right),}&{if x < 5}\\{x - 5,}&{if x \ge 5}\end{array}} \right.\]
The interval of the integration is 0 to 8.
This implies that \[\left| {x - 5} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 5} \right),}&{if 0 < x < 5}\\{x - 5,}&{if 5 \le x < 8}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^5 { - \left( {x - 5} \right)} dx + \int\limits_5^8 {\left( {x - 5} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^5 {\left( {5 - x} \right)} dx + \int\limits_5^8 {\left( {x - 5} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {5x - \dfrac{{{x^2}}}{2}} \right]_0^5 + \left[ {\dfrac{{{x^2}}}{2} - 5x} \right]_5^8\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {5\left( 5 \right) - \dfrac{{{5^2}}}{2}} \right) - \left( {5\left( 0 \right) - \dfrac{{{0^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{8^2}}}{2} - 5\left( 8 \right)} \right) - \left( {\dfrac{{{5^2}}}{2} - 5\left( 5 \right)} \right)} \right]\]
\[ \Rightarrow I = \left( {25 - \dfrac{{25}}{2}} \right) + \left( {\dfrac{{64}}{2} - 40} \right) - \left( {\dfrac{{25}}{2} - 25} \right)\]
\[ \Rightarrow I = \dfrac{{50 - 25}}{2} + \dfrac{{64 - 80}}{2} - \dfrac{{25 - 50}}{2}\]
\[ \Rightarrow I = \dfrac{{25}}{2} - \dfrac{{16}}{2} + \dfrac{{25}}{2}\]
\[ \Rightarrow I = 25 - 8\]
\[ \Rightarrow I = 17\]
Thus, \[\int\limits_0^8 {\left| {x - 5} \right|} dx = 17\].
Option ‘A’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {{x^n}dx} \]. They apply the formula \[\int\limits_a^b {{x^n}dx = \left[ {{x^{n + 1}}} \right]} _a^b\] which is an incorrect formula. The correct formula is \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
