
What is the value of the definite integral \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\]?
A. 0
B. 1
C. 2
D. 4
Answer
164.1k+ views
Hint: Here, a definite integral is given. First, simplify the given integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]. Then, check the values of the given absolute function in that interval. After that, apply the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]and solve it. In the end, apply the upper and lower limits to get the required answer.
Formula Used:\[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\].
Let consider,
\[I = \int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
\[I = \int\limits_0^\pi {\left| {\sin x} \right|} dx + \int\limits_\pi ^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the absolute function.
We know that, values of \[\sin x\] are positive in the interval \[\left[ {0,\pi } \right]\] and negative in the interval \[\left[ {\pi ,2\pi } \right]\].
So, we get
\[I = \int\limits_0^\pi {\sin x} dx + \int\limits_\pi ^{2\pi } { - \sin x} dx\]
\[ \Rightarrow I = \int\limits_0^\pi {\sin x} dx - \int\limits_\pi ^{2\pi } {\sin x} dx\]
Solve the integrals by applying the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\].
\[ \Rightarrow I = \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
\[ \Rightarrow I = \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
\[ \Rightarrow I = \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
\[ \Rightarrow I = 1 + 1 + 1 + 1\]
\[ \Rightarrow I = 4\]
Therefore, \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx = 4\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {\sin x} dx\] . They apply the formula \[\int\limits_a^b {\sin x} dx = \left[ {\cos x} \right]_a^b\] which is an incorrect formula. They get confused because \[\dfrac{d}{{dx}}\sin x = \cos x\] . The correct formula is \[\int\limits_a^b {\sin x} dx = \left[ { - \cos x} \right]_a^b\].
Formula Used:\[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\].
Let consider,
\[I = \int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
\[I = \int\limits_0^\pi {\left| {\sin x} \right|} dx + \int\limits_\pi ^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the absolute function.
We know that, values of \[\sin x\] are positive in the interval \[\left[ {0,\pi } \right]\] and negative in the interval \[\left[ {\pi ,2\pi } \right]\].
So, we get
\[I = \int\limits_0^\pi {\sin x} dx + \int\limits_\pi ^{2\pi } { - \sin x} dx\]
\[ \Rightarrow I = \int\limits_0^\pi {\sin x} dx - \int\limits_\pi ^{2\pi } {\sin x} dx\]
Solve the integrals by applying the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\].
\[ \Rightarrow I = \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
\[ \Rightarrow I = \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
\[ \Rightarrow I = \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
\[ \Rightarrow I = 1 + 1 + 1 + 1\]
\[ \Rightarrow I = 4\]
Therefore, \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx = 4\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {\sin x} dx\] . They apply the formula \[\int\limits_a^b {\sin x} dx = \left[ {\cos x} \right]_a^b\] which is an incorrect formula. They get confused because \[\dfrac{d}{{dx}}\sin x = \cos x\] . The correct formula is \[\int\limits_a^b {\sin x} dx = \left[ { - \cos x} \right]_a^b\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
