
What is the value of the definite integral \[\int\limits_0^2 {\left| {x - 1} \right|} dx\]?
A. 0
B. 2
C. \[\dfrac{1}{2}\]
D. 1
Answer
232.8k+ views
Hint: Here, a definite integral is given. The function present in the integral is an absolute value function. First, apply the absolute function formula that is \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]. Then, break the interval for the absolute value function. After that, solve the integrals. In the end, apply the limits and solve it to get the required answer.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^2 {\left| {x - 1} \right|} dx\].
Let consider,
\[I = \int\limits_0^2 {\left| {x - 1} \right|} dx\]
Substitute \[x = x - 1\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 1} \right),}&{if x - 1 < 0}\\{x - 1,}&{if x - 1 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 1} \right),}&{if x < 1}\\{x - 1,}&{if x \ge 1}\end{array}} \right.\]
The interval of the integration is 0 to 2.
This implies that \[\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 1} \right),}&{if 0 < x < 1}\\{x - 1,}&{if 1 \le x < 2}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^1 { - \left( {x - 1} \right)} dx + \int\limits_1^2 {\left( {x - 1} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^1 {\left( {1 - x} \right)} dx + \int\limits_1^2 {\left( {x - 1} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {x - \dfrac{{{x^2}}}{2}} \right]_0^1 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^2\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {1 - \dfrac{{{1^2}}}{2}} \right) - \left( {0 - \dfrac{{{0^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{2^2}}}{2} - 2} \right) - \left( {\dfrac{{{1^2}}}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2} + \left[ {\left( {2 - 2} \right) - \left( { - \dfrac{1}{2}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2} + \left[ {0 + \dfrac{1}{2}} \right]\]
\[ \Rightarrow I = \dfrac{1}{2} + \dfrac{1}{2}\]
\[ \Rightarrow I = 1\]
Thus, \[\int\limits_0^2 {\left| {x - 1} \right|} dx = 1\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {{x^n}dx} \]. They apply the formula \[\int\limits_a^b {{x^n}dx = \left[ {{x^{n + 1}}} \right]} _a^b\] which is an incorrect formula. The correct formula is \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^2 {\left| {x - 1} \right|} dx\].
Let consider,
\[I = \int\limits_0^2 {\left| {x - 1} \right|} dx\]
Substitute \[x = x - 1\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 1} \right),}&{if x - 1 < 0}\\{x - 1,}&{if x - 1 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 1} \right),}&{if x < 1}\\{x - 1,}&{if x \ge 1}\end{array}} \right.\]
The interval of the integration is 0 to 2.
This implies that \[\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {x - 1} \right),}&{if 0 < x < 1}\\{x - 1,}&{if 1 \le x < 2}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^1 { - \left( {x - 1} \right)} dx + \int\limits_1^2 {\left( {x - 1} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^1 {\left( {1 - x} \right)} dx + \int\limits_1^2 {\left( {x - 1} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {x - \dfrac{{{x^2}}}{2}} \right]_0^1 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^2\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {1 - \dfrac{{{1^2}}}{2}} \right) - \left( {0 - \dfrac{{{0^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{2^2}}}{2} - 2} \right) - \left( {\dfrac{{{1^2}}}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2} + \left[ {\left( {2 - 2} \right) - \left( { - \dfrac{1}{2}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2} + \left[ {0 + \dfrac{1}{2}} \right]\]
\[ \Rightarrow I = \dfrac{1}{2} + \dfrac{1}{2}\]
\[ \Rightarrow I = 1\]
Thus, \[\int\limits_0^2 {\left| {x - 1} \right|} dx = 1\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {{x^n}dx} \]. They apply the formula \[\int\limits_a^b {{x^n}dx = \left[ {{x^{n + 1}}} \right]} _a^b\] which is an incorrect formula. The correct formula is \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

