
What is the value of the definite integral \[\int_{ - 1}^1 {\log \left( {x + \sqrt {{x^2} + 1} } \right)dx} \]?
A. 0
B. \[\log 2\]
C. \[\log \dfrac{1}{2}\]
D. None of these
Answer
163.8k+ views
Hint: The integration has limit thus it is a definite integral. Then we will check whether the given function that is \[\log \left( {x + \sqrt {{x^2} + 1} } \right)\] is an odd function or an even function by putting x = -x. After that we will apply definite integral property to find the value of the integration.
Formula Used:Definite integral property:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]
Complete step by step solution:Given definite integral is \[\int_{ - 1}^1 {\log \left( {x + \sqrt {{x^2} + 1} } \right)dx} \].
Assume that, \[f\left( x \right) = \log \left( {x + \sqrt {{x^2} + 1} } \right)\]
To check whether\[f\left( x \right)\] is an odd function or an even function, we will put x = -x in \[f\left( x \right) = \log \left( {x + \sqrt {{x^2} + 1} } \right)\]:
\[f\left( { - x} \right) = \log \left( {\left( { - x} \right) + \sqrt {{{\left( { - x} \right)}^2} + 1} } \right)\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\sqrt {{x^2} + 1} - x} \right)\]
Now multiplying and divide \[\left( {\sqrt {{x^2} + 1} + x} \right)\] with \[\left( {\sqrt {{x^2} + 1} - x} \right)\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\left( {\sqrt {{x^2} + 1} - x} \right) \times \dfrac{{\left( {\sqrt {{x^2} + 1} + x} \right)}}{{\left( {\sqrt {{x^2} + 1} + x} \right)}}} \right)\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\dfrac{{\left( {\sqrt {{x^2} + 1} - x} \right) \times \left( {\sqrt {{x^2} + 1} + x} \right)}}{{\left( {\sqrt {{x^2} + 1} + x} \right)}}} \right)\]
Applying algebraic identity \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\dfrac{{{{\left( {\sqrt {{x^2} + 1} } \right)}^2} - {x^2}}}{{\left( {\sqrt {{x^2} + 1} + x} \right)}}} \right)\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\dfrac{{{x^2} + 1 - {x^2}}}{{\left( {\sqrt {{x^2} + 1} + x} \right)}}} \right)\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\dfrac{1}{{\left( {\sqrt {{x^2} + 1} + x} \right)}}} \right)\]
Now applying the quotient formula of logarithm function \[\log \dfrac{a}{b} = \log a - \log b\]:
\[ \Rightarrow f\left( { - x} \right) = \log \left( 1 \right) - \log \left( {\sqrt {{x^2} + 1} + x} \right)\]
Now putting \[\log 1 = 0\]
\[ \Rightarrow f\left( { - x} \right) = - \log \left( {\sqrt {{x^2} + 1} + x} \right)\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
Thus \[f\left( x \right)\] is an odd function.
Now applying the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\] in the given integration:
\[\int_{ - 1}^1 {\log \left( {x + \sqrt {{x^2} + 1} } \right)dx} = 0\]
Option ‘A’ is correct
Note: Students often follow a wrong way to solve the given definite integration. They apply by parts formula to solve it. It is a bit lengthy process. We can solve the given definite integration by using property of definite integration.
Formula Used:Definite integral property:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]
Complete step by step solution:Given definite integral is \[\int_{ - 1}^1 {\log \left( {x + \sqrt {{x^2} + 1} } \right)dx} \].
Assume that, \[f\left( x \right) = \log \left( {x + \sqrt {{x^2} + 1} } \right)\]
To check whether\[f\left( x \right)\] is an odd function or an even function, we will put x = -x in \[f\left( x \right) = \log \left( {x + \sqrt {{x^2} + 1} } \right)\]:
\[f\left( { - x} \right) = \log \left( {\left( { - x} \right) + \sqrt {{{\left( { - x} \right)}^2} + 1} } \right)\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\sqrt {{x^2} + 1} - x} \right)\]
Now multiplying and divide \[\left( {\sqrt {{x^2} + 1} + x} \right)\] with \[\left( {\sqrt {{x^2} + 1} - x} \right)\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\left( {\sqrt {{x^2} + 1} - x} \right) \times \dfrac{{\left( {\sqrt {{x^2} + 1} + x} \right)}}{{\left( {\sqrt {{x^2} + 1} + x} \right)}}} \right)\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\dfrac{{\left( {\sqrt {{x^2} + 1} - x} \right) \times \left( {\sqrt {{x^2} + 1} + x} \right)}}{{\left( {\sqrt {{x^2} + 1} + x} \right)}}} \right)\]
Applying algebraic identity \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\dfrac{{{{\left( {\sqrt {{x^2} + 1} } \right)}^2} - {x^2}}}{{\left( {\sqrt {{x^2} + 1} + x} \right)}}} \right)\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\dfrac{{{x^2} + 1 - {x^2}}}{{\left( {\sqrt {{x^2} + 1} + x} \right)}}} \right)\]
\[ \Rightarrow f\left( { - x} \right) = \log \left( {\dfrac{1}{{\left( {\sqrt {{x^2} + 1} + x} \right)}}} \right)\]
Now applying the quotient formula of logarithm function \[\log \dfrac{a}{b} = \log a - \log b\]:
\[ \Rightarrow f\left( { - x} \right) = \log \left( 1 \right) - \log \left( {\sqrt {{x^2} + 1} + x} \right)\]
Now putting \[\log 1 = 0\]
\[ \Rightarrow f\left( { - x} \right) = - \log \left( {\sqrt {{x^2} + 1} + x} \right)\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
Thus \[f\left( x \right)\] is an odd function.
Now applying the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\] in the given integration:
\[\int_{ - 1}^1 {\log \left( {x + \sqrt {{x^2} + 1} } \right)dx} = 0\]
Option ‘A’ is correct
Note: Students often follow a wrong way to solve the given definite integration. They apply by parts formula to solve it. It is a bit lengthy process. We can solve the given definite integration by using property of definite integration.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
