
What is the value of \[\sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} \]?
A. \[n + 1\]
B. \[\dfrac{n}{2}\]
C. \[n + 2\]
D. None of these
Answer
162.3k+ views
Hint: First, simplify the given function by rearranging the terms. Then, simplify the function by applying the combination formula in the terms of \[n\], and \[r\] . Then, solve the summation function. In the end, simplify the sum by using the formula of the sum of first \[n\] natural numbers and get the required answer.
Formula Used:The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
The sum of first \[n\] natural numbers: \[1 + 2 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Complete step by step solution:The given expression is \[\sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} \].
Let’s solve the above expression.
Rearrange the terms.
\[\sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{1 + \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}}}}} \]
Solve the right-hand side by applying the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\].
\[\sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{1 + \dfrac{{\left( {\dfrac{{n!}}{{\left( {r + 1} \right)!\left( {n - r - 1} \right)!}}} \right)}}{{\left( {\dfrac{{n!}}{{r!\left( {n - r} \right)!}}} \right)}}}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{1 + \dfrac{{\left( {\dfrac{{n!}}{{\left( {r + 1} \right)r!\left( {n - r - 1} \right)!}}} \right)}}{{\left( {\dfrac{{n!}}{{r!\left( {n - r} \right)\left( {n - r - 1} \right)!}}} \right)}}}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{1 + \dfrac{{\left( {\dfrac{1}{{\left( {r + 1} \right)}}} \right)}}{{\left( {\dfrac{1}{{\left( {n - r} \right)}}} \right)}}}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{1 + \dfrac{{n - r}}{{r + 1}}}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{\dfrac{{r + 1 + n - r}}{{r + 1}}}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{\left( {\dfrac{{n + 1}}{{r + 1}}} \right)}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{{r + 1}}{{n + 1}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \dfrac{1}{{n + 1}}\sum\limits_{r = 0}^{n - 1} {\left( {r + 1} \right)} \]
Now solve the summation function.
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \dfrac{1}{{n + 1}}\left[ {1 + 2 + 3 + ... + n} \right]\]
Use the formula of the sum of first \[n\] natural numbers: \[1 + 2 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\].
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \dfrac{1}{{n + 1}}\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]\]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \dfrac{n}{2}\]
Option ‘B’ is correct
Note: Students often get confused between the combination and permutation formulas.
Remember the following formulas:
The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
The permutation formula: \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Factorial: \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
Formula Used:The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
The sum of first \[n\] natural numbers: \[1 + 2 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Complete step by step solution:The given expression is \[\sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} \].
Let’s solve the above expression.
Rearrange the terms.
\[\sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{1 + \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}}}}} \]
Solve the right-hand side by applying the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\].
\[\sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{1 + \dfrac{{\left( {\dfrac{{n!}}{{\left( {r + 1} \right)!\left( {n - r - 1} \right)!}}} \right)}}{{\left( {\dfrac{{n!}}{{r!\left( {n - r} \right)!}}} \right)}}}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{1 + \dfrac{{\left( {\dfrac{{n!}}{{\left( {r + 1} \right)r!\left( {n - r - 1} \right)!}}} \right)}}{{\left( {\dfrac{{n!}}{{r!\left( {n - r} \right)\left( {n - r - 1} \right)!}}} \right)}}}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{1 + \dfrac{{\left( {\dfrac{1}{{\left( {r + 1} \right)}}} \right)}}{{\left( {\dfrac{1}{{\left( {n - r} \right)}}} \right)}}}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{1 + \dfrac{{n - r}}{{r + 1}}}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{\dfrac{{r + 1 + n - r}}{{r + 1}}}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{1}{{\left( {\dfrac{{n + 1}}{{r + 1}}} \right)}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n - 1} {\dfrac{{r + 1}}{{n + 1}}} \]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \dfrac{1}{{n + 1}}\sum\limits_{r = 0}^{n - 1} {\left( {r + 1} \right)} \]
Now solve the summation function.
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \dfrac{1}{{n + 1}}\left[ {1 + 2 + 3 + ... + n} \right]\]
Use the formula of the sum of first \[n\] natural numbers: \[1 + 2 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\].
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \dfrac{1}{{n + 1}}\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]\]
\[ \Rightarrow \sum\limits_{r = 0}^{n - 1} {\dfrac{{{}^n{C_r}}}{{{}^n{C_r} + {}^n{C_{r + 1}}}}} = \dfrac{n}{2}\]
Option ‘B’ is correct
Note: Students often get confused between the combination and permutation formulas.
Remember the following formulas:
The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
The permutation formula: \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Factorial: \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
