
What is the value of \[\sinh\left( {3z} \right)\]?
A. \[2\sinh z – 4\sinh^{3}z\]
B. \[4sinh^{3}z - 3\sinh z\]
C. \[3\sinh z + 4sinh^{3}z\]
D. None of these
Answer
221.1k+ views
Hint: In the given question, hyperbolic sine function is given. By using the various formulas of the hyperbolic sine function, we will find the value of \[\sinh\left( {3z} \right)\].
Formula Used:
\[\sinh(A + B) = \sinh A \cosh B + \cosh A\sinh B\]
\[\sinh2A = 2\sinh A \cosh A\]
\[\cosh 2A = cos{h^2}A + \sinh^{2}A\]
\[\cosh^{2}A = 1 + \sinh^{2}A\]
Complete step by step solution:
The given hyperbolic function is \[\sinh\left( {3z} \right)\].
Let’s simplify the above function.
\[\sinh\left( {3z} \right) = \sinh\left( {2z + z} \right)\]
Now apply the formula \[\sinh(A + B) = \sinh A\cosh B + \cosh A\sinh B\] on the right-hand side of the above equation.
\[ \Rightarrow \]\[\sinh(3z) = \sinh\left( {2z} \right)\cosh\left( z \right) + \cosh\left( {2z} \right)\sinh\left( z \right)\]
\[ \Rightarrow \]\[\sinh(3z) = \left[ {2\sinh\left( z \right)\cosh\left( z \right)} \right]\cosh\left( z \right) + \left[ {\cosh^{2}\left( z \right) + \sinh^{2}\left( z \right)} \right]\sinh\left( z \right)\] [since \[\sinh 2A = 2\sinh A\cosh A\] and \[\cosh 2A = \cosh^{2}A + \sinh^{2}A\]]
Simplify the above equation.
\[\sinh(3z) = 2\sinh\left( z \right)\cosh^{2}\left( z \right) + \left[ {\cosh^{2}\left( z \right) + \sinh^{2}\left( z \right)} \right]\sinh\left( z \right)\]
\[ \Rightarrow \]\[\sinh(3z) = 2\sinh\left( z \right)\left[ {1 + \sinh^{2}\left( z \right)} \right] + \left[ {1 + \sinh^{2}\left( z \right) + \sinh^{2}\left( z \right)} \right]\sinh\left( z \right)\] [Since \[\cosh^{2}A = 1 + sinh^{2}A\]]
\[ \Rightarrow \]\[\sinh(3z) = 2\sinh\left( z \right) + \sinh^{3}\left( z \right) + \left[ {1 + 2sinh^{2}\left( z \right)} \right]\sinh\left( z \right)\]
\[ \Rightarrow \]\[\sinh(3z) = 2\sinh\left( z \right) + 2\sinh^{3}\left( z \right) + \sinh\left( z \right) + 2\sinh^{3}\left( z \right)\]
\[\Rightarrow \]\[\sinh(3z) = 3\sinh\left( z \right) + 4\sinh^{3}\left( z \right)\]
Hence the correct option is option C.
Note: Students are often get confused between the basic trigonometric formulas and hyperbolic trigonometric formulas.
In basic trigonometry \[\cos^{2}A = 1 -\ sin^{2}A\]. But in hyperbolic trigonometry \[\cosh^{2}A = 1 + sinh^{2}A\].
Formula Used:
\[\sinh(A + B) = \sinh A \cosh B + \cosh A\sinh B\]
\[\sinh2A = 2\sinh A \cosh A\]
\[\cosh 2A = cos{h^2}A + \sinh^{2}A\]
\[\cosh^{2}A = 1 + \sinh^{2}A\]
Complete step by step solution:
The given hyperbolic function is \[\sinh\left( {3z} \right)\].
Let’s simplify the above function.
\[\sinh\left( {3z} \right) = \sinh\left( {2z + z} \right)\]
Now apply the formula \[\sinh(A + B) = \sinh A\cosh B + \cosh A\sinh B\] on the right-hand side of the above equation.
\[ \Rightarrow \]\[\sinh(3z) = \sinh\left( {2z} \right)\cosh\left( z \right) + \cosh\left( {2z} \right)\sinh\left( z \right)\]
\[ \Rightarrow \]\[\sinh(3z) = \left[ {2\sinh\left( z \right)\cosh\left( z \right)} \right]\cosh\left( z \right) + \left[ {\cosh^{2}\left( z \right) + \sinh^{2}\left( z \right)} \right]\sinh\left( z \right)\] [since \[\sinh 2A = 2\sinh A\cosh A\] and \[\cosh 2A = \cosh^{2}A + \sinh^{2}A\]]
Simplify the above equation.
\[\sinh(3z) = 2\sinh\left( z \right)\cosh^{2}\left( z \right) + \left[ {\cosh^{2}\left( z \right) + \sinh^{2}\left( z \right)} \right]\sinh\left( z \right)\]
\[ \Rightarrow \]\[\sinh(3z) = 2\sinh\left( z \right)\left[ {1 + \sinh^{2}\left( z \right)} \right] + \left[ {1 + \sinh^{2}\left( z \right) + \sinh^{2}\left( z \right)} \right]\sinh\left( z \right)\] [Since \[\cosh^{2}A = 1 + sinh^{2}A\]]
\[ \Rightarrow \]\[\sinh(3z) = 2\sinh\left( z \right) + \sinh^{3}\left( z \right) + \left[ {1 + 2sinh^{2}\left( z \right)} \right]\sinh\left( z \right)\]
\[ \Rightarrow \]\[\sinh(3z) = 2\sinh\left( z \right) + 2\sinh^{3}\left( z \right) + \sinh\left( z \right) + 2\sinh^{3}\left( z \right)\]
\[\Rightarrow \]\[\sinh(3z) = 3\sinh\left( z \right) + 4\sinh^{3}\left( z \right)\]
Hence the correct option is option C.
Note: Students are often get confused between the basic trigonometric formulas and hyperbolic trigonometric formulas.
In basic trigonometry \[\cos^{2}A = 1 -\ sin^{2}A\]. But in hyperbolic trigonometry \[\cosh^{2}A = 1 + sinh^{2}A\].
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

