
What is the value of integral $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$?
A. $\dfrac{\pi }{2}$
B. $\dfrac{\pi }{4}$
C. $0$
D. $1$
Answer
216.3k+ views
Hint: We will use the property of definite integrals of changing limits that integration area under $x = a$ to $x = b$ in $f(x)$ is same as integration under $x = a$ to $x = a + b - x$and then with some basic algebraic manipulation we will try to get the answer.
Formula Used:
$\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
$\int\limits_0^a {1dx = a} $
$\sin (\dfrac{\pi }{2} - x) = \cos x$
Complete step by step solution:
Given -$I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Adding and subtracting $\sqrt {\cos x} $in the numerator of $\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} - \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
On simplifying the equation
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1 - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$ —(1)
We know by the properties of integral that $\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
Here $a = 0$ and $b = \dfrac{\pi }{2}$
Hence $a + b - x = (\dfrac{\pi }{2} - x)$
Therefore $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$ But $\sin (\dfrac{\pi }{2} - x) = \cos x$
Hence $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
So $I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Thus $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = 2I$
We know that $\int\limits_a^b {f(x)} + \int\limits_a^b {g(x)} = \int\limits_a^b {f(x) + g(x)} $
Using the above formula –
$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = \int\limits_0^{\dfrac{\pi }{2}} {\,\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + } \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}dx$
But by equation (1)
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$
Thus $2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx$
$ \Rightarrow I = \dfrac{\pi }{2}$
Option ‘A’ is correct
Note: In such types of questions involving the complicated functions to be integrated, students may get wrong if they solve them directly without using the integration properties. Hence the questions having definite integration with complicated functions, first of all try to simplify the function as much as possible to a known standard form of integral using the integration properties and other trigonometric or algebraic formulas and once it is simplified to a known form then apply integral rules to integrate it.
Formula Used:
$\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
$\int\limits_0^a {1dx = a} $
$\sin (\dfrac{\pi }{2} - x) = \cos x$
Complete step by step solution:
Given -$I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Adding and subtracting $\sqrt {\cos x} $in the numerator of $\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} - \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
On simplifying the equation
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1 - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$ —(1)
We know by the properties of integral that $\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
Here $a = 0$ and $b = \dfrac{\pi }{2}$
Hence $a + b - x = (\dfrac{\pi }{2} - x)$
Therefore $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$ But $\sin (\dfrac{\pi }{2} - x) = \cos x$
Hence $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
So $I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Thus $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = 2I$
We know that $\int\limits_a^b {f(x)} + \int\limits_a^b {g(x)} = \int\limits_a^b {f(x) + g(x)} $
Using the above formula –
$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = \int\limits_0^{\dfrac{\pi }{2}} {\,\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + } \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}dx$
But by equation (1)
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$
Thus $2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx$
$ \Rightarrow I = \dfrac{\pi }{2}$
Option ‘A’ is correct
Note: In such types of questions involving the complicated functions to be integrated, students may get wrong if they solve them directly without using the integration properties. Hence the questions having definite integration with complicated functions, first of all try to simplify the function as much as possible to a known standard form of integral using the integration properties and other trigonometric or algebraic formulas and once it is simplified to a known form then apply integral rules to integrate it.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

