
What is the value of integral $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$?
A. $\dfrac{\pi }{2}$
B. $\dfrac{\pi }{4}$
C. $0$
D. $1$
Answer
163.2k+ views
Hint: We will use the property of definite integrals of changing limits that integration area under $x = a$ to $x = b$ in $f(x)$ is same as integration under $x = a$ to $x = a + b - x$and then with some basic algebraic manipulation we will try to get the answer.
Formula Used:
$\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
$\int\limits_0^a {1dx = a} $
$\sin (\dfrac{\pi }{2} - x) = \cos x$
Complete step by step solution:
Given -$I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Adding and subtracting $\sqrt {\cos x} $in the numerator of $\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} - \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
On simplifying the equation
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1 - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$ —(1)
We know by the properties of integral that $\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
Here $a = 0$ and $b = \dfrac{\pi }{2}$
Hence $a + b - x = (\dfrac{\pi }{2} - x)$
Therefore $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$ But $\sin (\dfrac{\pi }{2} - x) = \cos x$
Hence $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
So $I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Thus $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = 2I$
We know that $\int\limits_a^b {f(x)} + \int\limits_a^b {g(x)} = \int\limits_a^b {f(x) + g(x)} $
Using the above formula –
$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = \int\limits_0^{\dfrac{\pi }{2}} {\,\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + } \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}dx$
But by equation (1)
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$
Thus $2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx$
$ \Rightarrow I = \dfrac{\pi }{2}$
Option ‘A’ is correct
Note: In such types of questions involving the complicated functions to be integrated, students may get wrong if they solve them directly without using the integration properties. Hence the questions having definite integration with complicated functions, first of all try to simplify the function as much as possible to a known standard form of integral using the integration properties and other trigonometric or algebraic formulas and once it is simplified to a known form then apply integral rules to integrate it.
Formula Used:
$\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
$\int\limits_0^a {1dx = a} $
$\sin (\dfrac{\pi }{2} - x) = \cos x$
Complete step by step solution:
Given -$I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Adding and subtracting $\sqrt {\cos x} $in the numerator of $\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} - \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
On simplifying the equation
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1 - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$ —(1)
We know by the properties of integral that $\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
Here $a = 0$ and $b = \dfrac{\pi }{2}$
Hence $a + b - x = (\dfrac{\pi }{2} - x)$
Therefore $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$ But $\sin (\dfrac{\pi }{2} - x) = \cos x$
Hence $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
So $I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Thus $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = 2I$
We know that $\int\limits_a^b {f(x)} + \int\limits_a^b {g(x)} = \int\limits_a^b {f(x) + g(x)} $
Using the above formula –
$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = \int\limits_0^{\dfrac{\pi }{2}} {\,\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + } \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}dx$
But by equation (1)
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$
Thus $2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx$
$ \Rightarrow I = \dfrac{\pi }{2}$
Option ‘A’ is correct
Note: In such types of questions involving the complicated functions to be integrated, students may get wrong if they solve them directly without using the integration properties. Hence the questions having definite integration with complicated functions, first of all try to simplify the function as much as possible to a known standard form of integral using the integration properties and other trigonometric or algebraic formulas and once it is simplified to a known form then apply integral rules to integrate it.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
