
What is the value of integral $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$?
A. $\dfrac{\pi }{2}$
B. $\dfrac{\pi }{4}$
C. $0$
D. $1$
Answer
232.8k+ views
Hint: We will use the property of definite integrals of changing limits that integration area under $x = a$ to $x = b$ in $f(x)$ is same as integration under $x = a$ to $x = a + b - x$and then with some basic algebraic manipulation we will try to get the answer.
Formula Used:
$\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
$\int\limits_0^a {1dx = a} $
$\sin (\dfrac{\pi }{2} - x) = \cos x$
Complete step by step solution:
Given -$I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Adding and subtracting $\sqrt {\cos x} $in the numerator of $\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} - \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
On simplifying the equation
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1 - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$ —(1)
We know by the properties of integral that $\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
Here $a = 0$ and $b = \dfrac{\pi }{2}$
Hence $a + b - x = (\dfrac{\pi }{2} - x)$
Therefore $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$ But $\sin (\dfrac{\pi }{2} - x) = \cos x$
Hence $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
So $I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Thus $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = 2I$
We know that $\int\limits_a^b {f(x)} + \int\limits_a^b {g(x)} = \int\limits_a^b {f(x) + g(x)} $
Using the above formula –
$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = \int\limits_0^{\dfrac{\pi }{2}} {\,\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + } \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}dx$
But by equation (1)
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$
Thus $2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx$
$ \Rightarrow I = \dfrac{\pi }{2}$
Option ‘A’ is correct
Note: In such types of questions involving the complicated functions to be integrated, students may get wrong if they solve them directly without using the integration properties. Hence the questions having definite integration with complicated functions, first of all try to simplify the function as much as possible to a known standard form of integral using the integration properties and other trigonometric or algebraic formulas and once it is simplified to a known form then apply integral rules to integrate it.
Formula Used:
$\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
$\int\limits_0^a {1dx = a} $
$\sin (\dfrac{\pi }{2} - x) = \cos x$
Complete step by step solution:
Given -$I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Adding and subtracting $\sqrt {\cos x} $in the numerator of $\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} - \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
On simplifying the equation
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = \dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1 - \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}$
$ \Rightarrow \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$ —(1)
We know by the properties of integral that $\int\limits_a^b {f(x)dx = \int\limits_a^{a + b - x} {f(a + b - x)dx} } $
Here $a = 0$ and $b = \dfrac{\pi }{2}$
Hence $a + b - x = (\dfrac{\pi }{2} - x)$
Therefore $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$ But $\sin (\dfrac{\pi }{2} - x) = \cos x$
Hence $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$=$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
So $I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx$
Thus $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = 2I$
We know that $\int\limits_a^b {f(x)} + \int\limits_a^b {g(x)} = \int\limits_a^b {f(x) + g(x)} $
Using the above formula –
$\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}} dx = \int\limits_0^{\dfrac{\pi }{2}} {\,\dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + } \dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}dx$
But by equation (1)
$\dfrac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} + \dfrac{{\sqrt {\cos x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }} = 1$
Thus $2I = \int\limits_0^{\dfrac{\pi }{2}} 1 dx$
$ \Rightarrow I = \dfrac{\pi }{2}$
Option ‘A’ is correct
Note: In such types of questions involving the complicated functions to be integrated, students may get wrong if they solve them directly without using the integration properties. Hence the questions having definite integration with complicated functions, first of all try to simplify the function as much as possible to a known standard form of integral using the integration properties and other trigonometric or algebraic formulas and once it is simplified to a known form then apply integral rules to integrate it.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

