
What is the value of \[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \]?
A. \[\dfrac{\pi }{4}\]
B. \[\dfrac{\pi }{2}\]
C. \[{e^{\dfrac{{{\pi ^2}}}{{16}}}}\]
D. \[{e^{\dfrac{{{\pi ^2}}}{4}}}\]
Answer
164.1k+ views
Hint: To solve the given definite integral we will apply the property of the definite integral. As the lower limit of the definite integral is zero, thus we will apply \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]. Then add the integral and simplify to get simplest form the integration and solve it.
Formula Used:Definite integral property:
\[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]
Formula of integration:
\[\int {dx} = x + c\]
Complete step by step solution:Given definite integral is
\[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \]
Assume that, \[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \] …….(i)
Now applying the property of definite integral \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]:
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2} + x} \right)}^2}}}}}dx} \]
Now subtracting like term:
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{x^2}}}}}dx} \] ….. (ii)
Adding equation (i) and (ii)
\[I + I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} + \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{x^2}}}}}dx} \]
Rewrite the integration:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \]
Now cancel out like terms:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {1dx} \]
Integrate the right hand side:
\[ \Rightarrow 2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Now putting lower limit and upper limit
\[ \Rightarrow 2I = \dfrac{\pi }{2} - 0\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Option ‘A’ is correct
Note: Students often make mistake when they solve a definite integral. They put integrating factor in the step \[2I = \left[ {x + c} \right]_0^{\dfrac{\pi }{2}}\]. But it is incorrect because we don’t need to put integrating constant when we solve definite integral. The correct way is \[2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\].
Formula Used:Definite integral property:
\[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]
Formula of integration:
\[\int {dx} = x + c\]
Complete step by step solution:Given definite integral is
\[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \]
Assume that, \[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \] …….(i)
Now applying the property of definite integral \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]:
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2} + x} \right)}^2}}}}}dx} \]
Now subtracting like term:
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{x^2}}}}}dx} \] ….. (ii)
Adding equation (i) and (ii)
\[I + I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} + \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{x^2}}}}}dx} \]
Rewrite the integration:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \]
Now cancel out like terms:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {1dx} \]
Integrate the right hand side:
\[ \Rightarrow 2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Now putting lower limit and upper limit
\[ \Rightarrow 2I = \dfrac{\pi }{2} - 0\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Option ‘A’ is correct
Note: Students often make mistake when they solve a definite integral. They put integrating factor in the step \[2I = \left[ {x + c} \right]_0^{\dfrac{\pi }{2}}\]. But it is incorrect because we don’t need to put integrating constant when we solve definite integral. The correct way is \[2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
