
What is the value of \[\int_{ - 1}^1 {\left( {\sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} } \right)dx} \]?
A. 0
B. 1
C. -1
D. None of these
Answer
232.8k+ views
Hint: The given differential equation is known as a definite integral. First, we check whether the given function is an odd function or an even function. Then we will apply an odd function on the definite integral formula to calculate the value of the given integral.
Formula Used:Property of the definite integral:
\[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\end{array}} \right.\]
Complete step by step solution:Given definite integral is
\[\int_{ - 1}^1 {\left( {\sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} } \right)dx} \]
Assume that, \[f\left( x \right) = \sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} \].
To check whether \[f\left( x \right)\] is an odd function or even function, we will put x = -x in \[f\left( x \right)\].
\[f\left( { - x} \right) = \sqrt {1 + \left( { - x} \right) + {{\left( { - x} \right)}^2}} - \sqrt {1 - \left( { - x} \right) + {{\left( { - x} \right)}^2}} \]
\[ \Rightarrow f\left( { - x} \right) = \sqrt {1 - x + {x^2}} - \sqrt {1 + x + {x^2}} \]
Taking common negative sign:
\[ \Rightarrow f\left( { - x} \right) = - \left[ {\sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} } \right]\]
Now putting \[\sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} = f\left( x \right)\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
The given function is an odd function.
Now applying the formula \[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\] in the given definite integral:
\[\int_{ - 1}^1 {\left( {\sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} } \right)dx} = 0\]
Option ‘A’ is correct
Note: Students often make mistakes to apply the formula. They use \[\int_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)\] which is incorrect formula. The correct formula is \[\int\limits_{ - a}^a {f\left( x \right)dx = 0\,} {\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)\].
Formula Used:Property of the definite integral:
\[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\end{array}} \right.\]
Complete step by step solution:Given definite integral is
\[\int_{ - 1}^1 {\left( {\sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} } \right)dx} \]
Assume that, \[f\left( x \right) = \sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} \].
To check whether \[f\left( x \right)\] is an odd function or even function, we will put x = -x in \[f\left( x \right)\].
\[f\left( { - x} \right) = \sqrt {1 + \left( { - x} \right) + {{\left( { - x} \right)}^2}} - \sqrt {1 - \left( { - x} \right) + {{\left( { - x} \right)}^2}} \]
\[ \Rightarrow f\left( { - x} \right) = \sqrt {1 - x + {x^2}} - \sqrt {1 + x + {x^2}} \]
Taking common negative sign:
\[ \Rightarrow f\left( { - x} \right) = - \left[ {\sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} } \right]\]
Now putting \[\sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} = f\left( x \right)\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
The given function is an odd function.
Now applying the formula \[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\] in the given definite integral:
\[\int_{ - 1}^1 {\left( {\sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} } \right)dx} = 0\]
Option ‘A’ is correct
Note: Students often make mistakes to apply the formula. They use \[\int_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)\] which is incorrect formula. The correct formula is \[\int\limits_{ - a}^a {f\left( x \right)dx = 0\,} {\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

