
What is the value of \[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]?
A.\[cosec\,x\]
B.\[secx\]
C.\[\cos ec\dfrac{x}{2}\]
D.\[sec\dfrac{x}{2}\]
Answer
162.6k+ views
Hint: To solve the question we will first apply the formula \[1 - \cos x = 2{\sin ^2}x\] in numerator and \[1 + \cos x = 2{\cos ^2}x\] in denominator. Then simplify the denominator and numerator. Then apply chain on \[\tan \dfrac{x}{2}\] to get the desire result.
Formula used:
We will use the trigonometric formulas \[1 - \cos x = 2{\sin ^2}\dfrac{x}{2}\], \[1 + \cos x = 2{\cos ^2}\dfrac{x}{2}\], \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]and \[\sec x = \dfrac{1}{{\cos x}}\], \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\],\[\dfrac{1}{{\sin x}} = cosec\,x\] and the derivative formulas \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\], \[\dfrac{d}{{dx}}\tan x = {\sec ^2}\dfrac{x}{2}\] and \[\dfrac{d}{{dx}}x = 1\], and we will use the chain rule.
Complete Step-by-Step Solution:
Given \[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
Now we will use the trigonometric formulas, \[1 - \cos x = 2{\sin ^2}\dfrac{x}{2}\], \[1 + \cos x = 2{\cos ^2}\dfrac{x}{2}\], and substituting the values in the given expression,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{2{{\cos }^2}\dfrac{x}{2}}}} } \right]\]
Now use know that\[\tan x = \dfrac{{\sin x}}{{\cos x}}\], now we will simplify using the formula,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\log \sqrt {{{\tan }^2}\dfrac{x}{2}} } \right]\]
Now we will take the square root, we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\log \left( {\tan \dfrac{x}{2}} \right)} \right]\]
Now using the derivative formula \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\] and chain rule,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\tan \dfrac{x}{2}}}\dfrac{d}{{dx}}\tan \dfrac{x}{2}\]
Now again we will use derivative formula \[\dfrac{d}{{dx}}\tan x = {\sec ^2}\dfrac{x}{2}\], and we will use the chain rule,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\tan \dfrac{x}{2}}}\left( {{{\sec }^2}\dfrac{x}{2}} \right)\dfrac{d}{{dx}}\dfrac{x}{2}\]
Now again using the derivative formula, \[\dfrac{d}{{dx}}x = 1\], we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\tan \dfrac{x}{2}}}\left( {{{\sec }^2}\dfrac{x}{2}} \right)\left( {\dfrac{1}{2}} \right)\]\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)\left( {\dfrac{1}{2}} \right)\]
Now we will use the trigonometric formulas and \[\sec x = \dfrac{1}{{\cos x}}\], we will get,
Now we will simplify the expression we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}}\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)\left( {\dfrac{1}{2}} \right)\],
Now we will eliminate the like terms, we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\sin \dfrac{x}{2}}}\left( {\dfrac{1}{{\cos \dfrac{x}{2}}}} \right)\left( {\dfrac{1}{2}} \right)\]
Now we will simplify the expression we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}\],
Now we will use the trigonometric identity \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\],we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\sin x}}\],
Now using the trigonometric formula, \[\dfrac{1}{{\sin x}} = cosec\,x\], we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = cosec\,x\],
The correct option is A.
Note: There is another method to solve the problem. That is shown below:
Apply the formula \[\log {a^m} = m\log a\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\dfrac{1}{2}\log \dfrac{{1 - \cos x}}{{1 + \cos x}}} \right]\]
Apply chain rule
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\dfrac{1}{{\dfrac{{1 - \cos x}}{{1 + \cos x}}}}\dfrac{d}{{dx}}\left[ {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \right]\]
Apply product rule \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2} \cdot \dfrac{{1 + \cos x}}{{1 - \cos x}} \cdot \dfrac{{\left( {1 + \cos x} \right)\dfrac{d}{{dx}}\left( {1 - \cos x} \right) - \left( {1 - \cos x} \right)\dfrac{d}{{dx}}\left( {1 + \cos x} \right)}}{{{{\left( {1 + \cos x} \right)}^2}}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2} \cdot \dfrac{{1 + \cos x}}{{1 - \cos x}} \cdot \dfrac{{\left( {1 + \cos x} \right)\left( {\sin x} \right) - \left( {1 - \cos x} \right)\left( { - \sin x} \right)}}{{{{\left( {1 + \cos x} \right)}^2}}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2} \cdot \dfrac{{1 + \cos x}}{{1 - \cos x}} \cdot \dfrac{{\sin x + \sin x\cos x + \sin x - \sin x\cos x}}{{{{\left( {1 + \cos x} \right)}^2}}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{{2\sin x}}{{2\left( {1 - \cos x} \right)\left( {1 + \cos x} \right)}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{{\sin x}}{{1 - {{\cos }^2}x}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{{\sin x}}{{{{\sin }^2}x}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = cosec x\]
Formula used:
We will use the trigonometric formulas \[1 - \cos x = 2{\sin ^2}\dfrac{x}{2}\], \[1 + \cos x = 2{\cos ^2}\dfrac{x}{2}\], \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]and \[\sec x = \dfrac{1}{{\cos x}}\], \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\],\[\dfrac{1}{{\sin x}} = cosec\,x\] and the derivative formulas \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\], \[\dfrac{d}{{dx}}\tan x = {\sec ^2}\dfrac{x}{2}\] and \[\dfrac{d}{{dx}}x = 1\], and we will use the chain rule.
Complete Step-by-Step Solution:
Given \[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
Now we will use the trigonometric formulas, \[1 - \cos x = 2{\sin ^2}\dfrac{x}{2}\], \[1 + \cos x = 2{\cos ^2}\dfrac{x}{2}\], and substituting the values in the given expression,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{2{{\cos }^2}\dfrac{x}{2}}}} } \right]\]
Now use know that\[\tan x = \dfrac{{\sin x}}{{\cos x}}\], now we will simplify using the formula,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\log \sqrt {{{\tan }^2}\dfrac{x}{2}} } \right]\]
Now we will take the square root, we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\log \left( {\tan \dfrac{x}{2}} \right)} \right]\]
Now using the derivative formula \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\] and chain rule,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\tan \dfrac{x}{2}}}\dfrac{d}{{dx}}\tan \dfrac{x}{2}\]
Now again we will use derivative formula \[\dfrac{d}{{dx}}\tan x = {\sec ^2}\dfrac{x}{2}\], and we will use the chain rule,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\tan \dfrac{x}{2}}}\left( {{{\sec }^2}\dfrac{x}{2}} \right)\dfrac{d}{{dx}}\dfrac{x}{2}\]
Now again using the derivative formula, \[\dfrac{d}{{dx}}x = 1\], we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\tan \dfrac{x}{2}}}\left( {{{\sec }^2}\dfrac{x}{2}} \right)\left( {\dfrac{1}{2}} \right)\]\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)\left( {\dfrac{1}{2}} \right)\]
Now we will use the trigonometric formulas and \[\sec x = \dfrac{1}{{\cos x}}\], we will get,
Now we will simplify the expression we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}}\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)\left( {\dfrac{1}{2}} \right)\],
Now we will eliminate the like terms, we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\sin \dfrac{x}{2}}}\left( {\dfrac{1}{{\cos \dfrac{x}{2}}}} \right)\left( {\dfrac{1}{2}} \right)\]
Now we will simplify the expression we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}\],
Now we will use the trigonometric identity \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\],we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{{\sin x}}\],
Now using the trigonometric formula, \[\dfrac{1}{{\sin x}} = cosec\,x\], we will get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = cosec\,x\],
The correct option is A.
Note: There is another method to solve the problem. That is shown below:
Apply the formula \[\log {a^m} = m\log a\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\dfrac{1}{2}\log \dfrac{{1 - \cos x}}{{1 + \cos x}}} \right]\]
Apply chain rule
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\dfrac{1}{{\dfrac{{1 - \cos x}}{{1 + \cos x}}}}\dfrac{d}{{dx}}\left[ {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \right]\]
Apply product rule \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2} \cdot \dfrac{{1 + \cos x}}{{1 - \cos x}} \cdot \dfrac{{\left( {1 + \cos x} \right)\dfrac{d}{{dx}}\left( {1 - \cos x} \right) - \left( {1 - \cos x} \right)\dfrac{d}{{dx}}\left( {1 + \cos x} \right)}}{{{{\left( {1 + \cos x} \right)}^2}}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2} \cdot \dfrac{{1 + \cos x}}{{1 - \cos x}} \cdot \dfrac{{\left( {1 + \cos x} \right)\left( {\sin x} \right) - \left( {1 - \cos x} \right)\left( { - \sin x} \right)}}{{{{\left( {1 + \cos x} \right)}^2}}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2} \cdot \dfrac{{1 + \cos x}}{{1 - \cos x}} \cdot \dfrac{{\sin x + \sin x\cos x + \sin x - \sin x\cos x}}{{{{\left( {1 + \cos x} \right)}^2}}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{{2\sin x}}{{2\left( {1 - \cos x} \right)\left( {1 + \cos x} \right)}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{{\sin x}}{{1 - {{\cos }^2}x}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{{\sin x}}{{{{\sin }^2}x}}\]
\[\dfrac{d}{{dx}}\left[ {\log \sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = cosec x\]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
