
What is the value of definite integral \[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\]?
A. \[\dfrac{\pi }{4}\]
B. \[\dfrac{\pi }{2}\]
C. \[\dfrac{{3\pi }}{4}\]
D. \[\pi \]
Answer
161.1k+ views
Hint: The given integration is a definite integration. We will apply definite integral property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] to simplify it. Then add the given integration with the new form of the integration and solve it.
Formula Used:Definite integration property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]
Integration formula:
\[\int {dx} = x + c\]
Complementary formula of trigonometry:
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Complete step by step solution:Given definite integration is \[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\].
Assume that, \[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\] …..(i)
Now applying the property of definite integration:
\[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right)}}} dx\]
Now applying the complementary formula of trigonometry:
\[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{\dfrac{2}{3}}}x}}{{{{\cos }^{\dfrac{2}{3}}}x + {{\sin }^{\dfrac{2}{3}}}x}}} dx\] …..(ii)
Adding equation (i) and (ii)
\[I + I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx + \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{\dfrac{2}{3}}}x}}{{{{\cos }^{\dfrac{2}{3}}}x + {{\sin }^{\dfrac{2}{3}}}x}}} dx\]
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\]
Now cancel out common term from denominator and numerator:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {dx} \]
Now integrate the right side:
\[ \Rightarrow 2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow 2I = \left[ {\dfrac{\pi }{2} - 0} \right]\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Option ‘A’ is correct
Note: Students often make mistakes to solve the definite integration. They divide denominator and numerator by \[{\cos ^{\dfrac{2}{3}}}x\] and use substitution method to solve it. But it is incorrect way. Here we need to apply the property of definite integral and solve it.
Formula Used:Definite integration property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]
Integration formula:
\[\int {dx} = x + c\]
Complementary formula of trigonometry:
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Complete step by step solution:Given definite integration is \[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\].
Assume that, \[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\] …..(i)
Now applying the property of definite integration:
\[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right)}}} dx\]
Now applying the complementary formula of trigonometry:
\[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{\dfrac{2}{3}}}x}}{{{{\cos }^{\dfrac{2}{3}}}x + {{\sin }^{\dfrac{2}{3}}}x}}} dx\] …..(ii)
Adding equation (i) and (ii)
\[I + I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx + \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{\dfrac{2}{3}}}x}}{{{{\cos }^{\dfrac{2}{3}}}x + {{\sin }^{\dfrac{2}{3}}}x}}} dx\]
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\]
Now cancel out common term from denominator and numerator:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {dx} \]
Now integrate the right side:
\[ \Rightarrow 2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow 2I = \left[ {\dfrac{\pi }{2} - 0} \right]\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Option ‘A’ is correct
Note: Students often make mistakes to solve the definite integration. They divide denominator and numerator by \[{\cos ^{\dfrac{2}{3}}}x\] and use substitution method to solve it. But it is incorrect way. Here we need to apply the property of definite integral and solve it.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
