
What is the value of $3{\left( {\sin x - \cos x} \right)^4} + 6{\left( {\sin x + \cos x} \right)^2} + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$?
a) $11$
b) $12$
c) $13$
d) $14$
Answer
232.8k+ views
Hint: The given problem requires us to simplify the given trigonometric expression. We will use the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ to solve the given question. The question describes the wide-ranging applications of trigonometric identities and formulae. We must keep in mind the trigonometric identities while solving such questions.
Formula used: ${\sin ^2}\theta + {\cos ^2}\theta = 1$
${a^3} + {b^3} + 3ab\left( {a + b} \right) = {\left( {a + b} \right)^3}$
Complete step by step solution:
First, we simplify the given trigonometric expression using algebraic identity $\left( {{a^2} - 2ab + {b^2}} \right) = {\left( {a - b} \right)^2}$.
So, we have, $3{\left( {\sin x - \cos x} \right)^4} + 6{\left( {\sin x + \cos x} \right)^2} + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$.
$ \Rightarrow 3{\left[ {{{\left( {\sin x - \cos x} \right)}^2}} \right]^2} + 6\left( {{{\sin }^2}x + 2\sin x\cos x + {{\cos }^2}x} \right) + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$
$ \Rightarrow 3{\left( {{{\sin }^2}x - 2\sin x\cos x + {{\cos }^2}x} \right)^2} + 6\left( {{{\sin }^2}x + 2\sin x\cos x + {{\cos }^2}x} \right) + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$
Using the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$, we get,
$ \Rightarrow 3{\left( {1 - 2\sin x\cos x} \right)^2} + 6\left( {1 + 2\sin x\cos x} \right) + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$
$ \Rightarrow 3\left( {{1^2} - 2 \times 2\sin x\cos x + {{\left( {2\sin x\cos x} \right)}^2}} \right) + 6\left( {1 + 2\sin x\cos x} \right) + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$
$ \Rightarrow 3\left( {1 - 4\sin x\cos x + 4{{\sin }^2}x{{\cos }^2}x} \right) + 6 + 12\sin x\cos x + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$
Opening the brackets, we get,
$ \Rightarrow 3 - 12\sin x\cos x + 12{\sin ^2}x{\cos ^2}x + 6 + 12\sin x\cos x + 4{\sin ^6}x + 4{\cos ^6}x$
Cancelling the like terms with opposite terms, we get,
$ \Rightarrow 3 + 12{\sin ^2}x{\cos ^2}x + 6 + 4{\sin ^6}x + 4{\cos ^6}x - - - - \left( 1 \right)$
Now, we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$. Cubing both sides of the equation, we get,
$ \Rightarrow {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^3} = {1^3}$
Using the algebraic identity ${a^3} + {b^3} + 3ab\left( {a + b} \right) = {\left( {a + b} \right)^3}$,
\[ \Rightarrow {\left( {{{\sin }^2}\theta } \right)^3} + {\left( {{{\cos }^2}\theta } \right)^3} + 3{\sin ^2}\theta {\cos ^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = {1^3}\]
\[ \Rightarrow {\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta = 1\]
Multiplying both sides by four, we get,
\[ \Rightarrow 4{\sin ^6}\theta + 4{\cos ^6}\theta + 12{\sin ^2}\theta {\cos ^2}\theta = 4 - - - - \left( 2 \right)\]
Substituting value from equation $\left( 2 \right)$ into expression $\left( 1 \right)$, we get,
\[ \Rightarrow 9 + 12{\sin ^2}x{\cos ^2}x + 4{\sin ^6}x + 4{\cos ^6}x\]
\[ \Rightarrow 9 + 4 = 13\]
So, we get the value of $3{\left( {\sin x - \cos x} \right)^4} + 6{\left( {\sin x + \cos x} \right)^2} + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$ as $13$.
Hence, option C is the correct answer.
Note:
Basic trigonometric identities include ${\sin ^2}\theta + {\cos ^2}\theta = 1$, ${\sec ^2}\theta = {\tan ^2}\theta + 1$ and $\cos e{c^2}\theta = {\cot ^2}\theta + 1$. These identities are of vital importance for solving any question involving trigonometric functions and identities. Algebraic identities such as ${a^3} + {b^3} + 3ab\left( {a + b} \right) = {\left( {a + b} \right)^3}$ and $\left( {{a^2} - 2ab + {b^2}} \right) = {\left( {a - b} \right)^2}$, and rules like transposition rule come into significant use while solving such problems.
Formula used: ${\sin ^2}\theta + {\cos ^2}\theta = 1$
${a^3} + {b^3} + 3ab\left( {a + b} \right) = {\left( {a + b} \right)^3}$
Complete step by step solution:
First, we simplify the given trigonometric expression using algebraic identity $\left( {{a^2} - 2ab + {b^2}} \right) = {\left( {a - b} \right)^2}$.
So, we have, $3{\left( {\sin x - \cos x} \right)^4} + 6{\left( {\sin x + \cos x} \right)^2} + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$.
$ \Rightarrow 3{\left[ {{{\left( {\sin x - \cos x} \right)}^2}} \right]^2} + 6\left( {{{\sin }^2}x + 2\sin x\cos x + {{\cos }^2}x} \right) + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$
$ \Rightarrow 3{\left( {{{\sin }^2}x - 2\sin x\cos x + {{\cos }^2}x} \right)^2} + 6\left( {{{\sin }^2}x + 2\sin x\cos x + {{\cos }^2}x} \right) + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$
Using the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$, we get,
$ \Rightarrow 3{\left( {1 - 2\sin x\cos x} \right)^2} + 6\left( {1 + 2\sin x\cos x} \right) + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$
$ \Rightarrow 3\left( {{1^2} - 2 \times 2\sin x\cos x + {{\left( {2\sin x\cos x} \right)}^2}} \right) + 6\left( {1 + 2\sin x\cos x} \right) + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$
$ \Rightarrow 3\left( {1 - 4\sin x\cos x + 4{{\sin }^2}x{{\cos }^2}x} \right) + 6 + 12\sin x\cos x + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$
Opening the brackets, we get,
$ \Rightarrow 3 - 12\sin x\cos x + 12{\sin ^2}x{\cos ^2}x + 6 + 12\sin x\cos x + 4{\sin ^6}x + 4{\cos ^6}x$
Cancelling the like terms with opposite terms, we get,
$ \Rightarrow 3 + 12{\sin ^2}x{\cos ^2}x + 6 + 4{\sin ^6}x + 4{\cos ^6}x - - - - \left( 1 \right)$
Now, we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$. Cubing both sides of the equation, we get,
$ \Rightarrow {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^3} = {1^3}$
Using the algebraic identity ${a^3} + {b^3} + 3ab\left( {a + b} \right) = {\left( {a + b} \right)^3}$,
\[ \Rightarrow {\left( {{{\sin }^2}\theta } \right)^3} + {\left( {{{\cos }^2}\theta } \right)^3} + 3{\sin ^2}\theta {\cos ^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = {1^3}\]
\[ \Rightarrow {\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta = 1\]
Multiplying both sides by four, we get,
\[ \Rightarrow 4{\sin ^6}\theta + 4{\cos ^6}\theta + 12{\sin ^2}\theta {\cos ^2}\theta = 4 - - - - \left( 2 \right)\]
Substituting value from equation $\left( 2 \right)$ into expression $\left( 1 \right)$, we get,
\[ \Rightarrow 9 + 12{\sin ^2}x{\cos ^2}x + 4{\sin ^6}x + 4{\cos ^6}x\]
\[ \Rightarrow 9 + 4 = 13\]
So, we get the value of $3{\left( {\sin x - \cos x} \right)^4} + 6{\left( {\sin x + \cos x} \right)^2} + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$ as $13$.
Hence, option C is the correct answer.
Note:
Basic trigonometric identities include ${\sin ^2}\theta + {\cos ^2}\theta = 1$, ${\sec ^2}\theta = {\tan ^2}\theta + 1$ and $\cos e{c^2}\theta = {\cot ^2}\theta + 1$. These identities are of vital importance for solving any question involving trigonometric functions and identities. Algebraic identities such as ${a^3} + {b^3} + 3ab\left( {a + b} \right) = {\left( {a + b} \right)^3}$ and $\left( {{a^2} - 2ab + {b^2}} \right) = {\left( {a - b} \right)^2}$, and rules like transposition rule come into significant use while solving such problems.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

