
Using the truth table, examine whether the following statement pattern is tautology, contradiction and contingency.
$(p\wedge \sim q)\leftrightarrow (p\to q)$
Answer
217.2k+ views
Hint: Construct the truth table for $(p\wedge \sim q)\leftrightarrow (p\to q)$ and if all the propositions are true in every row then it is tautology, if all the propositions are false in every row then contradiction and if there is at least one row with true condition and one row with false condition, then it is contingency.
Complete step-by-step answer:
A truth table is a mathematical table used in logic- specifically in connection with Boolean algebra, Boolean functions and propositional calculus- which sets out the functional values of logical expressions on each of their functional arguments, that is for each combination of values taken by their logical variables. A truth table can be used to show whether a propositional expression is true for all input values, that is logically valid.
Tautology: A tautology has a logical form that cannot possibly be false no matter what truth values are assigned to the sentence letters.
Contradiction: A tautology has a logical form that cannot possibly be true no matter what truth values are assigned to the sentence letters.
Contingency: A Contingency has a logical form that can be either true or false depending on what truth values are assigned to the sentence letters.

Note: $p\wedge q$ is true when both $p$ and $q$ are true. $p\to q$ is true when $q$ is true or both are false. $p\leftrightarrow q$ is true when both $p$ and $q$ are true or both are false. This is the rule used to draw the above truth table.
Complete step-by-step answer:
A truth table is a mathematical table used in logic- specifically in connection with Boolean algebra, Boolean functions and propositional calculus- which sets out the functional values of logical expressions on each of their functional arguments, that is for each combination of values taken by their logical variables. A truth table can be used to show whether a propositional expression is true for all input values, that is logically valid.
Tautology: A tautology has a logical form that cannot possibly be false no matter what truth values are assigned to the sentence letters.
Contradiction: A tautology has a logical form that cannot possibly be true no matter what truth values are assigned to the sentence letters.
Contingency: A Contingency has a logical form that can be either true or false depending on what truth values are assigned to the sentence letters.

Note: $p\wedge q$ is true when both $p$ and $q$ are true. $p\to q$ is true when $q$ is true or both are false. $p\leftrightarrow q$ is true when both $p$ and $q$ are true or both are false. This is the rule used to draw the above truth table.
Recently Updated Pages
Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

