
Ultraviolet light of wavelength \[{\lambda _1}\] and \[{\lambda _2}\] when allowed to fall on hydrogen atoms in their ground state is found to liberate electron with kinetic energy 1.8 eV and 4.0 eV respectively. Find the value of \[\dfrac{{{\lambda _2}}}{{{\lambda _1}}}\] .
A. $\dfrac{8}{7} \\ $
B. $\dfrac{7}{8} \\ $
C. $\dfrac{{20}}{9} \\ $
D. $\dfrac{9}{{20}}$
Answer
216.3k+ views
Hint:The postulates of Bohr say energy can only be emitted or absorbed when an electron changes from one non-radiating orbit to another. Here energy is falling so this energy is absorbed by electrons.
Formula used:
Energy is given by,
$E = hf = \dfrac{{hc}}{\lambda }$
Where, $h$ is the planck’s constant and $f$ is the frequency of the radiation.
Complete step by step solution:
The Neil Bohr Model has three Bohr's Postulates, here the third postulate is explained in more detail below: only when an electron jumps from one non-radiating orbit to another does energy either emit or absorb. When an electron jumps from the inner to the outer orbit, the energy difference between the two stationary orbits is absorbed, and when an electron jumps from the outer to the inner orbit, it is expelled.
If $E_1$ and $E_2$ are equal to the total energy (T.E.) of an e- in its inner and outer stationary orbits, respectively, the frequency of radiation released during a jump from the outer to the inner orbit is given by:
\[\;E{\text{ }} = \;{\text{ }}hf\;{\text{ }} = {\text{ }}{E_2} - {\text{ }}{E_1} \ldots .\left( 3 \right)\]
We are aware that the majority of hydrogen atoms exist in the ground state, and that when this atom is exposed to energy from an electron collision or heat, the electrons may need to be raised to a higher energy level, such as from n = 1 to n = 2, 3, etc. The difference between their energies may be determined using equation (3).
If we apply $E = hf = \dfrac{{hc}}{\lambda }$.
So, by applying this relation we get,
$\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{\dfrac{{hc}}{{{\lambda _1}}}}}{{\dfrac{{hc}}{{{\lambda _2}}}}} = \dfrac{{{\lambda _2}}}{{{\lambda _1}}} \\ $
From it we can get
$\dfrac{{{\lambda _2}}}{{{\lambda _1}}} = \dfrac{{{E_1}}}{{{E_2}}} \\
\Rightarrow \dfrac{{{\lambda _2}}}{{{\lambda _1}}}= \dfrac{{1.8}}{4} \\
\therefore \dfrac{{{\lambda _2}}}{{{\lambda _1}}}= \dfrac{9}{{20}}$
Therefore, option D is the correct answer.
Notes There are three Bohr's Postulates in the Neil Bohr Model, and the third one is detailed in greater detail below: The only time energy emits or absorbs is when an electron transitions from one non-radiating orbit to another. When an electron jumps from the inner to the outer orbit, the energy difference between the two stationary orbits is absorbed, and when an electron jumps from the outer to the inner orbit, it is ejected.
Formula used:
Energy is given by,
$E = hf = \dfrac{{hc}}{\lambda }$
Where, $h$ is the planck’s constant and $f$ is the frequency of the radiation.
Complete step by step solution:
The Neil Bohr Model has three Bohr's Postulates, here the third postulate is explained in more detail below: only when an electron jumps from one non-radiating orbit to another does energy either emit or absorb. When an electron jumps from the inner to the outer orbit, the energy difference between the two stationary orbits is absorbed, and when an electron jumps from the outer to the inner orbit, it is expelled.
If $E_1$ and $E_2$ are equal to the total energy (T.E.) of an e- in its inner and outer stationary orbits, respectively, the frequency of radiation released during a jump from the outer to the inner orbit is given by:
\[\;E{\text{ }} = \;{\text{ }}hf\;{\text{ }} = {\text{ }}{E_2} - {\text{ }}{E_1} \ldots .\left( 3 \right)\]
We are aware that the majority of hydrogen atoms exist in the ground state, and that when this atom is exposed to energy from an electron collision or heat, the electrons may need to be raised to a higher energy level, such as from n = 1 to n = 2, 3, etc. The difference between their energies may be determined using equation (3).
If we apply $E = hf = \dfrac{{hc}}{\lambda }$.
So, by applying this relation we get,
$\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{\dfrac{{hc}}{{{\lambda _1}}}}}{{\dfrac{{hc}}{{{\lambda _2}}}}} = \dfrac{{{\lambda _2}}}{{{\lambda _1}}} \\ $
From it we can get
$\dfrac{{{\lambda _2}}}{{{\lambda _1}}} = \dfrac{{{E_1}}}{{{E_2}}} \\
\Rightarrow \dfrac{{{\lambda _2}}}{{{\lambda _1}}}= \dfrac{{1.8}}{4} \\
\therefore \dfrac{{{\lambda _2}}}{{{\lambda _1}}}= \dfrac{9}{{20}}$
Therefore, option D is the correct answer.
Notes There are three Bohr's Postulates in the Neil Bohr Model, and the third one is detailed in greater detail below: The only time energy emits or absorbs is when an electron transitions from one non-radiating orbit to another. When an electron jumps from the inner to the outer orbit, the energy difference between the two stationary orbits is absorbed, and when an electron jumps from the outer to the inner orbit, it is ejected.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

