
Two straight lines intersect at a point O. Points \[{A_1},{A_2}, \cdots ,{A_n}\] are taken on one line and points \[{B_1},{B_2}, \cdots ,{B_n}\] on the other. If the point O is not be used, then what is the number of triangles that can be drawn using these points as vertices?
A. \[n\left( {n - 1} \right)\]
B. \[n{\left( {n - 1} \right)^2}\]
C. \[{n^2}\left( {n - 1} \right)\]
D. \[{n^2}{\left( {n - 1} \right)^2}\]
Answer
161.4k+ views
Hint: There are two cases to solve the question. First case is we take one point from the first line and two points on the second line. Second case is we take two points from the first line and one point on the second line. Then solve both equation by using combination formula and add them.
Formula Used: Combination formula:
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution: To make a triangle we need three points. Here we will consider two cases.
First case: Taking two points from first line and one point from the second line to make a triangle.
Second case: Taking two points from first line and one point from the second line to make a triangle.
The number of points on first line is n. The number of points on second line is 2.
First case:
The number of ways of choosing two points from first line is \[{}^n{C_2}\].
The number of ways of choosing one point from second line is \[{}^n{C_1}\].
The number of triangles by choosing two points from first line and one point from second line is \[{}^n{C_2} \cdot {}^n{C_1}\].
\[ = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} \cdot \dfrac{{n!}}{{1!\left( {n - 1} \right)!}}\]
\[ = \dfrac{{n\left( {n - 1} \right) \cdot \left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} \cdot \dfrac{{n \cdot \left( {n - 1} \right)!}}{{1!\left( {n - 1} \right)!}}\]
\[ = \dfrac{{n\left( {n - 1} \right)}}{2} \cdot n\]
\[ = \dfrac{{{n^2}\left( {n - 1} \right)}}{2}\]
Second case
The number of ways of choosing one point from first line is \[{}^n{C_1}\].
The number of ways of choosing two points from second line is \[{}^n{C_2}\].
The number of triangles by choosing one point from first line and two points from second line is \[{}^n{C_1} \cdot {}^n{C_2}\].
\[ = \dfrac{{n!}}{{1!\left( {n - 1} \right)!}} \cdot \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}\]
\[ = \dfrac{{n \cdot \left( {n - 1} \right)!}}{{1!\left( {n - 1} \right)!}} \cdot \dfrac{{n\left( {n - 1} \right) \cdot \left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}}\]
\[ = n \cdot \dfrac{{n\left( {n - 1} \right)}}{2}\]
\[ = \dfrac{{{n^2}\left( {n - 1} \right)}}{2}\]
Thus total number of triangles that can be drawn using these points as vertices is \[ = \dfrac{{{n^2}\left( {n - 1} \right)}}{2} + \dfrac{{{n^2}\left( {n - 1} \right)}}{2}\]
\[ = {n^2}\left( {n - 1} \right)\]
Option ‘C’ is correct
Note: Student often do mistake to solve this question. They consider only first condition. They do not consider the second case. For this reason they are unable to reach the correct answer.
Formula Used: Combination formula:
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution: To make a triangle we need three points. Here we will consider two cases.
First case: Taking two points from first line and one point from the second line to make a triangle.
Second case: Taking two points from first line and one point from the second line to make a triangle.
The number of points on first line is n. The number of points on second line is 2.
First case:
The number of ways of choosing two points from first line is \[{}^n{C_2}\].
The number of ways of choosing one point from second line is \[{}^n{C_1}\].
The number of triangles by choosing two points from first line and one point from second line is \[{}^n{C_2} \cdot {}^n{C_1}\].
\[ = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} \cdot \dfrac{{n!}}{{1!\left( {n - 1} \right)!}}\]
\[ = \dfrac{{n\left( {n - 1} \right) \cdot \left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} \cdot \dfrac{{n \cdot \left( {n - 1} \right)!}}{{1!\left( {n - 1} \right)!}}\]
\[ = \dfrac{{n\left( {n - 1} \right)}}{2} \cdot n\]
\[ = \dfrac{{{n^2}\left( {n - 1} \right)}}{2}\]
Second case
The number of ways of choosing one point from first line is \[{}^n{C_1}\].
The number of ways of choosing two points from second line is \[{}^n{C_2}\].
The number of triangles by choosing one point from first line and two points from second line is \[{}^n{C_1} \cdot {}^n{C_2}\].
\[ = \dfrac{{n!}}{{1!\left( {n - 1} \right)!}} \cdot \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}\]
\[ = \dfrac{{n \cdot \left( {n - 1} \right)!}}{{1!\left( {n - 1} \right)!}} \cdot \dfrac{{n\left( {n - 1} \right) \cdot \left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}}\]
\[ = n \cdot \dfrac{{n\left( {n - 1} \right)}}{2}\]
\[ = \dfrac{{{n^2}\left( {n - 1} \right)}}{2}\]
Thus total number of triangles that can be drawn using these points as vertices is \[ = \dfrac{{{n^2}\left( {n - 1} \right)}}{2} + \dfrac{{{n^2}\left( {n - 1} \right)}}{2}\]
\[ = {n^2}\left( {n - 1} \right)\]
Option ‘C’ is correct
Note: Student often do mistake to solve this question. They consider only first condition. They do not consider the second case. For this reason they are unable to reach the correct answer.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
