
Two large conducting plates are placed parallel to each other with a separation of $2.00cm$ between them. An electron starting from rest near one of the plates reaches the other plate in $2.00$ microseconds. Find the surface charge density on the inner surface.
Answer
123.6k+ views
Hint: The motion of the electron is caused by the electric field between the plates and the force pulling the electron is electrostatic force between the two plates. Calculate the value of the acceleration and apply in the formula for the electrostatic force of attraction to find the value of the surface charge density.
Complete step by step answer:
It is given that an electron is travelling from one plate to the other which are separated by a distance of $2.00cm$.
Distance between the two plates, $u = 2.00cm = 2 \times {10^{ - 2}}m$
Time taken by the electron to travel from one plate to other, $t = 2\mu s = 2 \times {10^{ - 6}}s$
The field between the plates and the electrostatic force causing the electron to travel between the two plates.
Here we are asked to find the value of the surface charge density on the inner surface,
It is known that, the electric field, $E = \dfrac{\sigma }{{{\varepsilon _0}}}$
Where, $\sigma $ is the surface charge density
${\varepsilon _0}$ is the permittivity of the vacuum=\[8.85 \times {10^{ - 12}}F{m^{ - 1}}\]
We know electrostatic force, $F = qE$
Where,$q$ is the charge of electron = \[1.6 \times {10^{ - 19}}c\]
Applying the value of the electric field, we get,
$ \Rightarrow F = q\dfrac{\sigma }{{{\varepsilon _0}}}$...........................equation (1)
But we know the force given by mass is multiplied by the acceleration.
That is, $F = {m_e} \times a$............................equation (2)
Where, ${m_e}$ is the mass of the electron = \[9.1 \times {10^{ - 31}}kg\]
$a$ is the acceleration
Acceleration is given by, $a = \dfrac{{2u}}{{{t^2}}}$
So equation 2 will become, $F = {m_e} \times \dfrac{{2u}}{{{t^2}}}$.................equation (3)
That is, from equations 1 and 3 we get,
$ \Rightarrow F = q\dfrac{\sigma }{{{\varepsilon _0}}} = {m_e} \times \dfrac{{2u}}{{{t^2}}}$
\[ \Rightarrow \sigma = \dfrac{{{m_e}2u{\varepsilon _0}}}{{{t^2}q}}\]
Applying all the known values we get,
\[ \Rightarrow \sigma = \dfrac{{9.1 \times {{10}^{ - 31}} \times 2 \times 2 \times {{10}^{ - 2}} \times 8.85 \times {{10}^{ - 12}}}}{{{{\left( {2 \times {{10}^{ - 6}}} \right)}^2} \times 1.6 \times {{10}^{ - 19}}}}\]
\[ \therefore \sigma = 0.503 \times {10^{ - 12}}\]
That is the surface charge density on the inner surface, \[\sigma = 0.503 \times {10^{ - 12}}\].
Note: The electrostatic force or Coulomb force is capable of acting through space, producing an effect even when there is no physical contact between the particles involved. Since there is no physical contact required for this interaction, it is assumed that there exists an electric field around a charged particle. When another charged particle enters this electric field, forces of an electrical nature are formed.
Complete step by step answer:
It is given that an electron is travelling from one plate to the other which are separated by a distance of $2.00cm$.
Distance between the two plates, $u = 2.00cm = 2 \times {10^{ - 2}}m$
Time taken by the electron to travel from one plate to other, $t = 2\mu s = 2 \times {10^{ - 6}}s$
The field between the plates and the electrostatic force causing the electron to travel between the two plates.
Here we are asked to find the value of the surface charge density on the inner surface,
It is known that, the electric field, $E = \dfrac{\sigma }{{{\varepsilon _0}}}$
Where, $\sigma $ is the surface charge density
${\varepsilon _0}$ is the permittivity of the vacuum=\[8.85 \times {10^{ - 12}}F{m^{ - 1}}\]
We know electrostatic force, $F = qE$
Where,$q$ is the charge of electron = \[1.6 \times {10^{ - 19}}c\]
Applying the value of the electric field, we get,
$ \Rightarrow F = q\dfrac{\sigma }{{{\varepsilon _0}}}$...........................equation (1)
But we know the force given by mass is multiplied by the acceleration.
That is, $F = {m_e} \times a$............................equation (2)
Where, ${m_e}$ is the mass of the electron = \[9.1 \times {10^{ - 31}}kg\]
$a$ is the acceleration
Acceleration is given by, $a = \dfrac{{2u}}{{{t^2}}}$
So equation 2 will become, $F = {m_e} \times \dfrac{{2u}}{{{t^2}}}$.................equation (3)
That is, from equations 1 and 3 we get,
$ \Rightarrow F = q\dfrac{\sigma }{{{\varepsilon _0}}} = {m_e} \times \dfrac{{2u}}{{{t^2}}}$
\[ \Rightarrow \sigma = \dfrac{{{m_e}2u{\varepsilon _0}}}{{{t^2}q}}\]
Applying all the known values we get,
\[ \Rightarrow \sigma = \dfrac{{9.1 \times {{10}^{ - 31}} \times 2 \times 2 \times {{10}^{ - 2}} \times 8.85 \times {{10}^{ - 12}}}}{{{{\left( {2 \times {{10}^{ - 6}}} \right)}^2} \times 1.6 \times {{10}^{ - 19}}}}\]
\[ \therefore \sigma = 0.503 \times {10^{ - 12}}\]
That is the surface charge density on the inner surface, \[\sigma = 0.503 \times {10^{ - 12}}\].
Note: The electrostatic force or Coulomb force is capable of acting through space, producing an effect even when there is no physical contact between the particles involved. Since there is no physical contact required for this interaction, it is assumed that there exists an electric field around a charged particle. When another charged particle enters this electric field, forces of an electrical nature are formed.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

Physics Average Value and RMS Value JEE Main 2025

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Course 2025: Get All the Relevant Details

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Revision Notes for Physics on Modern Physics

JEE Main 2022 July 28 Shift 2 Question Paper with Answer Keys & Solutions

Introduction to Dimensions With Different Units and Formula for JEE
