
Two fixed charges $ - 2Q$ and $Q$ are located at the points with coordinates $\left( { - 3a,0} \right)$ and $\left( { + 3a,0} \right)$ respectively in the $xy$ plane.
a. Show that all the points in the $xy$ plane where the electric potential due to the two charges is zero lie on a circle. Find its radius and the location of its center.
b. Give the expression $V\left( x \right)$ at a general point on the $x$ axis and sketch the function $V\left( x \right)$ on the whole $x$ axis.
c. If a particle of charge $ + q$ starts from rest at the center of the circle, show by a short quantitative argument that the particle eventually crosses the circle. Find its speed when it does so.
Answer
217.8k+ views
Hint: Use the formula of the potential of the point charges and equate it to zero to find whether it forms the circle equation. Consider the points in the $x$ axis, in which the potential varies by equation the potential to the zero. Use the conservation of energy formula to find the velocity of the charge.
Useful formula:
(1) The formula of the potential due to point charge is given by
$V = \dfrac{{KQ}}{r}$
Where $V$ is the potential due to the point charge, $K$ is the constant, $Q$ is the point charge and $r$ is the radius of the circle.
(2) The formula of the kinetic energy is given by
$\Rightarrow$ $KE = \dfrac{1}{2}m{v^2}$
Where $KE$ is the kinetic energy of the charge, $m$ is the mass of the charge and $v$ is its velocity.
Complete step by step solution:
(a) Let us consider a point $P$ in the $xy$ plane at which the two point charges $ - 2Q$ and $Q$ are located at the $A$ and $B$ respectively. Let us consider that the potential due to these two fixed charges is zero.
$
V = 0 \\
\dfrac{{KQ}}{r} = 0 \\
$
Substituting the charge and the radius in the above step, we get
$\Rightarrow$ $\dfrac{{K\left( { - 2Q} \right)}}{{\sqrt {{{\left( {3a + x} \right)}^2} + {y^2}} }} + \dfrac{{K\left( { - 2Q} \right)}}{{\sqrt {{{\left( {3a - x} \right)}^2} + {y^2}} }} = 0$
Simplifying the above step, we get
$\Rightarrow$ ${\left( {x - 5a} \right)^2} + {y^2} = 4{a^2}$
Hence all the points lie on the circle of the center $\left( {5a,0} \right)$ and radius $4a$ .
(b) Let us consider the point for $x > 3a$
$\Rightarrow$ $
V = \dfrac{{KQ}}{{x - 3a}} - \dfrac{{2KQ}}{{x + 3a}} \\
V = \dfrac{{KQ\left( {9a - x} \right)}}{{{x^2} - 9{a^2}}} \\
$ …………………(1)
For the value of the $ - 3a < x < 3a$
$\Rightarrow$ $
V = \dfrac{{KQ}}{{3a - x}} - \dfrac{{2KQ}}{{x + 3a}} \\
V = \dfrac{{KQ3\left( {x - a} \right)}}{{9{a^2} - {x^2}}} \\
$ …………………(2)
For the value of the $x < - 3a$
$\Rightarrow$ $
V = \dfrac{{KQ}}{{3a - x}} - \dfrac{{2KQ}}{{ - 3a - x}} \\
V = \dfrac{{KQ3\left( {x - a} \right)}}{{9{a^2} - {x^2}}} \\
$ …………….(3)
From the equation (1), (2) and (3), it is clear that the value of $V \ne 0$ and is negative for $x < - 3a$ .
(c) Let us apply the conservation of the momentum at the center and the circumference.
\[{\left( {KE + PE} \right)_{{\text{center}}}} = {\left( {KE + PE} \right)_{{\text{circumference}}}}\]
The charge starts to move at the circumference only. In the centre it remains fixed.
$\Rightarrow$ $
0 + K\left[ {\dfrac{{Qq}}{{2a}} - \dfrac{{2Qq}}{{8a}}} \right] = \dfrac{1}{2}m{v^2} + K\left[ {\dfrac{{Qq}}{{6a}} - \dfrac{{2Qq}}{{12a}}} \right] \\
\dfrac{1}{2}mv = \dfrac{{KQq}}{{4a}} \\
v = \sqrt {\dfrac{1}{{4\pi { \in _0}}}\left( {\dfrac{{Qq}}{{2ma}}} \right)} \\
$
Hence the velocity of the charge is obtained as $\sqrt {\dfrac{1}{{4\pi { \in _0}}}\left( {\dfrac{{Qq}}{{2ma}}} \right)} $ .

Note: Remember that the kinetic energy of the charge at the centre of the circle is zero but it has potential energy. This is because at the centre, the charge is fixed but at the circumference it moves with some velocity. $3a + x$ and $3a - x$ are taken, since the charge $ - 2Q$ and $Q$ are at $x$ distance from the zero.
Useful formula:
(1) The formula of the potential due to point charge is given by
$V = \dfrac{{KQ}}{r}$
Where $V$ is the potential due to the point charge, $K$ is the constant, $Q$ is the point charge and $r$ is the radius of the circle.
(2) The formula of the kinetic energy is given by
$\Rightarrow$ $KE = \dfrac{1}{2}m{v^2}$
Where $KE$ is the kinetic energy of the charge, $m$ is the mass of the charge and $v$ is its velocity.
Complete step by step solution:
(a) Let us consider a point $P$ in the $xy$ plane at which the two point charges $ - 2Q$ and $Q$ are located at the $A$ and $B$ respectively. Let us consider that the potential due to these two fixed charges is zero.
$
V = 0 \\
\dfrac{{KQ}}{r} = 0 \\
$
Substituting the charge and the radius in the above step, we get
$\Rightarrow$ $\dfrac{{K\left( { - 2Q} \right)}}{{\sqrt {{{\left( {3a + x} \right)}^2} + {y^2}} }} + \dfrac{{K\left( { - 2Q} \right)}}{{\sqrt {{{\left( {3a - x} \right)}^2} + {y^2}} }} = 0$
Simplifying the above step, we get
$\Rightarrow$ ${\left( {x - 5a} \right)^2} + {y^2} = 4{a^2}$
Hence all the points lie on the circle of the center $\left( {5a,0} \right)$ and radius $4a$ .
(b) Let us consider the point for $x > 3a$
$\Rightarrow$ $
V = \dfrac{{KQ}}{{x - 3a}} - \dfrac{{2KQ}}{{x + 3a}} \\
V = \dfrac{{KQ\left( {9a - x} \right)}}{{{x^2} - 9{a^2}}} \\
$ …………………(1)
For the value of the $ - 3a < x < 3a$
$\Rightarrow$ $
V = \dfrac{{KQ}}{{3a - x}} - \dfrac{{2KQ}}{{x + 3a}} \\
V = \dfrac{{KQ3\left( {x - a} \right)}}{{9{a^2} - {x^2}}} \\
$ …………………(2)
For the value of the $x < - 3a$
$\Rightarrow$ $
V = \dfrac{{KQ}}{{3a - x}} - \dfrac{{2KQ}}{{ - 3a - x}} \\
V = \dfrac{{KQ3\left( {x - a} \right)}}{{9{a^2} - {x^2}}} \\
$ …………….(3)
From the equation (1), (2) and (3), it is clear that the value of $V \ne 0$ and is negative for $x < - 3a$ .
(c) Let us apply the conservation of the momentum at the center and the circumference.
\[{\left( {KE + PE} \right)_{{\text{center}}}} = {\left( {KE + PE} \right)_{{\text{circumference}}}}\]
The charge starts to move at the circumference only. In the centre it remains fixed.
$\Rightarrow$ $
0 + K\left[ {\dfrac{{Qq}}{{2a}} - \dfrac{{2Qq}}{{8a}}} \right] = \dfrac{1}{2}m{v^2} + K\left[ {\dfrac{{Qq}}{{6a}} - \dfrac{{2Qq}}{{12a}}} \right] \\
\dfrac{1}{2}mv = \dfrac{{KQq}}{{4a}} \\
v = \sqrt {\dfrac{1}{{4\pi { \in _0}}}\left( {\dfrac{{Qq}}{{2ma}}} \right)} \\
$
Hence the velocity of the charge is obtained as $\sqrt {\dfrac{1}{{4\pi { \in _0}}}\left( {\dfrac{{Qq}}{{2ma}}} \right)} $ .

Note: Remember that the kinetic energy of the charge at the centre of the circle is zero but it has potential energy. This is because at the centre, the charge is fixed but at the circumference it moves with some velocity. $3a + x$ and $3a - x$ are taken, since the charge $ - 2Q$ and $Q$ are at $x$ distance from the zero.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding the Wheatstone Bridge: Principles, Formula, and Applications

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main 2025-26 Mock Test: Ultimate Practice Guide for Aspirants

Other Pages
MOSFET: Definition, Working Principle, Types & Applications

Diffraction of Light - Young’s Single Slit Experiment

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

JEE Main 2025-26 Chapter-Wise Mock Test Preparation Guide

Understanding Elastic Collisions in Two Dimensions

