
To find the numerical value of \[\int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} \], is it necessary to know the values of the constants?
A. \[p\]
B. \[q\]
C. \[s\]
D. \[p\] and \[s\]
Answer
163.8k+ views
Hint: Here, a definite integral is given. First, separate the terms present in the given integral. Then, check whether the functions present in the integral are an even or an odd function. If the function is odd, then the value of that integral is 0. If the function is even, then solve the integral by applying the integration rule \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\]. In the end, simplify the integral to get the required answer.
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
\[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\], where \[n\] is a number.
Complete step by step solution:The given integral is \[\int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} \].
Let consider,
\[I = \int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} \]
Simplify the integral by applying the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_{ - 2}^2 {\left( {p{x^2} + s} \right)dx} + \int\limits_{ - 2}^2 {qx} dx\]
Let consider,
\[f\left( x \right) = p{x^2} + s\]
Now we have to check whether the above function is an odd function or an even function.
So, let’s calculate the value of \[f\left( { - x} \right)\].
\[f\left( { - x} \right) = p{\left( { - x} \right)^2} + s\]
\[ \Rightarrow f\left( { - x} \right) = p{x^2} + s\]
\[ \Rightarrow f\left( { - x} \right) = f\left( x \right)\]
Therefore, the function \[f\left( x \right) = p{x^2} + s\] is an even function.
Again consider, \[g\left( x \right) = qx\]
let’s calculate the value of \[g\left( { - x} \right)\].
\[g\left( { - x} \right) = q\left( { - x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - qx\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore, the function \[g\left( x \right) = qx\] is an odd function.
Now apply the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function and \[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function.
We get,
\[I = 2\int\limits_0^2 {\left( {p{x^2} + s} \right)dx} + 0\]
\[ \Rightarrow I = 2\int\limits_0^2 {\left( {p{x^2} + s} \right)dx} \]
Solve the integral by applying the integration formula \[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\] and \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[ \Rightarrow I = 2\left[ {p\dfrac{{{x^3}}}{3} + sx} \right]_0^2\]
Apply the upper and lower limits.
\[ \Rightarrow I = 2\left[ {\left[ {p\dfrac{{{2^3}}}{3} + s\left( 2 \right)} \right] - \left[ {p\dfrac{{{0^3}}}{3} + s\left( 0 \right)} \right]} \right]\]
\[ \Rightarrow I = 2\left[ {\dfrac{{8p}}{3} + 2s} \right]\]
\[ \Rightarrow I = \dfrac{{16p}}{3} + 4s\]
\[ \Rightarrow I = \dfrac{4}{3}\left( {4p + 3s} \right)\]
Therefore, \[\int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} = \dfrac{4}{3}\left( {4p + 3s} \right)\].
Thus, to calculate the numerical value of the integral it is necessary to know the values of \[p\] and \[s\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {{x^n}} dx\] . They apply the formula \[\int\limits_a^b {{x^n}} dx = \left[ {{x^{n + 1}}} \right]_a^b\] which is an incorrect formula. The correct formula is \[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
\[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\], where \[n\] is a number.
Complete step by step solution:The given integral is \[\int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} \].
Let consider,
\[I = \int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} \]
Simplify the integral by applying the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_{ - 2}^2 {\left( {p{x^2} + s} \right)dx} + \int\limits_{ - 2}^2 {qx} dx\]
Let consider,
\[f\left( x \right) = p{x^2} + s\]
Now we have to check whether the above function is an odd function or an even function.
So, let’s calculate the value of \[f\left( { - x} \right)\].
\[f\left( { - x} \right) = p{\left( { - x} \right)^2} + s\]
\[ \Rightarrow f\left( { - x} \right) = p{x^2} + s\]
\[ \Rightarrow f\left( { - x} \right) = f\left( x \right)\]
Therefore, the function \[f\left( x \right) = p{x^2} + s\] is an even function.
Again consider, \[g\left( x \right) = qx\]
let’s calculate the value of \[g\left( { - x} \right)\].
\[g\left( { - x} \right) = q\left( { - x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - qx\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore, the function \[g\left( x \right) = qx\] is an odd function.
Now apply the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function and \[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function.
We get,
\[I = 2\int\limits_0^2 {\left( {p{x^2} + s} \right)dx} + 0\]
\[ \Rightarrow I = 2\int\limits_0^2 {\left( {p{x^2} + s} \right)dx} \]
Solve the integral by applying the integration formula \[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\] and \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[ \Rightarrow I = 2\left[ {p\dfrac{{{x^3}}}{3} + sx} \right]_0^2\]
Apply the upper and lower limits.
\[ \Rightarrow I = 2\left[ {\left[ {p\dfrac{{{2^3}}}{3} + s\left( 2 \right)} \right] - \left[ {p\dfrac{{{0^3}}}{3} + s\left( 0 \right)} \right]} \right]\]
\[ \Rightarrow I = 2\left[ {\dfrac{{8p}}{3} + 2s} \right]\]
\[ \Rightarrow I = \dfrac{{16p}}{3} + 4s\]
\[ \Rightarrow I = \dfrac{4}{3}\left( {4p + 3s} \right)\]
Therefore, \[\int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} = \dfrac{4}{3}\left( {4p + 3s} \right)\].
Thus, to calculate the numerical value of the integral it is necessary to know the values of \[p\] and \[s\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {{x^n}} dx\] . They apply the formula \[\int\limits_a^b {{x^n}} dx = \left[ {{x^{n + 1}}} \right]_a^b\] which is an incorrect formula. The correct formula is \[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
