
To find the numerical value of \[\int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} \], is it necessary to know the values of the constants?
A. \[p\]
B. \[q\]
C. \[s\]
D. \[p\] and \[s\]
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, separate the terms present in the given integral. Then, check whether the functions present in the integral are an even or an odd function. If the function is odd, then the value of that integral is 0. If the function is even, then solve the integral by applying the integration rule \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\]. In the end, simplify the integral to get the required answer.
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
\[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\], where \[n\] is a number.
Complete step by step solution:The given integral is \[\int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} \].
Let consider,
\[I = \int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} \]
Simplify the integral by applying the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_{ - 2}^2 {\left( {p{x^2} + s} \right)dx} + \int\limits_{ - 2}^2 {qx} dx\]
Let consider,
\[f\left( x \right) = p{x^2} + s\]
Now we have to check whether the above function is an odd function or an even function.
So, let’s calculate the value of \[f\left( { - x} \right)\].
\[f\left( { - x} \right) = p{\left( { - x} \right)^2} + s\]
\[ \Rightarrow f\left( { - x} \right) = p{x^2} + s\]
\[ \Rightarrow f\left( { - x} \right) = f\left( x \right)\]
Therefore, the function \[f\left( x \right) = p{x^2} + s\] is an even function.
Again consider, \[g\left( x \right) = qx\]
let’s calculate the value of \[g\left( { - x} \right)\].
\[g\left( { - x} \right) = q\left( { - x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - qx\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore, the function \[g\left( x \right) = qx\] is an odd function.
Now apply the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function and \[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function.
We get,
\[I = 2\int\limits_0^2 {\left( {p{x^2} + s} \right)dx} + 0\]
\[ \Rightarrow I = 2\int\limits_0^2 {\left( {p{x^2} + s} \right)dx} \]
Solve the integral by applying the integration formula \[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\] and \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[ \Rightarrow I = 2\left[ {p\dfrac{{{x^3}}}{3} + sx} \right]_0^2\]
Apply the upper and lower limits.
\[ \Rightarrow I = 2\left[ {\left[ {p\dfrac{{{2^3}}}{3} + s\left( 2 \right)} \right] - \left[ {p\dfrac{{{0^3}}}{3} + s\left( 0 \right)} \right]} \right]\]
\[ \Rightarrow I = 2\left[ {\dfrac{{8p}}{3} + 2s} \right]\]
\[ \Rightarrow I = \dfrac{{16p}}{3} + 4s\]
\[ \Rightarrow I = \dfrac{4}{3}\left( {4p + 3s} \right)\]
Therefore, \[\int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} = \dfrac{4}{3}\left( {4p + 3s} \right)\].
Thus, to calculate the numerical value of the integral it is necessary to know the values of \[p\] and \[s\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {{x^n}} dx\] . They apply the formula \[\int\limits_a^b {{x^n}} dx = \left[ {{x^{n + 1}}} \right]_a^b\] which is an incorrect formula. The correct formula is \[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
\[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\], where \[n\] is a number.
Complete step by step solution:The given integral is \[\int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} \].
Let consider,
\[I = \int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} \]
Simplify the integral by applying the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_{ - 2}^2 {\left( {p{x^2} + s} \right)dx} + \int\limits_{ - 2}^2 {qx} dx\]
Let consider,
\[f\left( x \right) = p{x^2} + s\]
Now we have to check whether the above function is an odd function or an even function.
So, let’s calculate the value of \[f\left( { - x} \right)\].
\[f\left( { - x} \right) = p{\left( { - x} \right)^2} + s\]
\[ \Rightarrow f\left( { - x} \right) = p{x^2} + s\]
\[ \Rightarrow f\left( { - x} \right) = f\left( x \right)\]
Therefore, the function \[f\left( x \right) = p{x^2} + s\] is an even function.
Again consider, \[g\left( x \right) = qx\]
let’s calculate the value of \[g\left( { - x} \right)\].
\[g\left( { - x} \right) = q\left( { - x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - qx\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore, the function \[g\left( x \right) = qx\] is an odd function.
Now apply the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function and \[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function.
We get,
\[I = 2\int\limits_0^2 {\left( {p{x^2} + s} \right)dx} + 0\]
\[ \Rightarrow I = 2\int\limits_0^2 {\left( {p{x^2} + s} \right)dx} \]
Solve the integral by applying the integration formula \[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\] and \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[ \Rightarrow I = 2\left[ {p\dfrac{{{x^3}}}{3} + sx} \right]_0^2\]
Apply the upper and lower limits.
\[ \Rightarrow I = 2\left[ {\left[ {p\dfrac{{{2^3}}}{3} + s\left( 2 \right)} \right] - \left[ {p\dfrac{{{0^3}}}{3} + s\left( 0 \right)} \right]} \right]\]
\[ \Rightarrow I = 2\left[ {\dfrac{{8p}}{3} + 2s} \right]\]
\[ \Rightarrow I = \dfrac{{16p}}{3} + 4s\]
\[ \Rightarrow I = \dfrac{4}{3}\left( {4p + 3s} \right)\]
Therefore, \[\int\limits_{ - 2}^2 {\left( {p{x^2} + qx + s} \right)dx} = \dfrac{4}{3}\left( {4p + 3s} \right)\].
Thus, to calculate the numerical value of the integral it is necessary to know the values of \[p\] and \[s\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {{x^n}} dx\] . They apply the formula \[\int\limits_a^b {{x^n}} dx = \left[ {{x^{n + 1}}} \right]_a^b\] which is an incorrect formula. The correct formula is \[\int\limits_a^b {{x^n}} dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

