
To deposit one gm equivalent of an element at an electrode, the quantity of electricity needed is
A. One ampere
B. $96000$ amperes
C. $96500$ farads
D. $96500$ coulombs
Answer
163.2k+ views
Hint: According to faraday's law of electrolysis, one gram equivalent of a substance deposited is equal to one Faraday of charge passing during electrolysis. Thus to approach this question we have to use Faraday’s law of electrolysis to determine the quantity of electricity.
Complete Step by Step Answer:
The current is the flow of electric carriers such as electrons or the flow of the charge per unit of time.
$Q=i\times t$
Here $Q$= Charge
$i=$ Current
$t=$time
When $i=1amp$ $t=1\sec $ Then $Q=1amp\times 1\sec =1coulomb$
We know that one electron is consumed to discharge unit charge, thereby ${{N}_{A}}$electrons are consumed to discharge ${{N}_{A}}$charges (${{N}_{A}}$= Avogadro’s number=$6.023\times {{10}^{23}}$)
Charge of ${{N}_{A}}$electrons $=(1.6\times {{10}^{-19}}coulombs)\times (6.023\times {{10}^{23}})$ [Since the charge of one electron in the S.I unit$=1.6\times {{10}^{-19}}$coulomb]
Or, charge of ${{N}_{A}}$electrons $=96500$coulombs $=1$Faraday
One mole is equal to $6.023\times {{10}^{23}}$no. of electrons.
Let us consider a half-cell reaction on the cathode of any metal ($1$mole)
${{M}^{n+}}+n{{e}^{-}}\to M(s)$
n-factor is the amount of electrons required for deposition of one mole of any metal.
The number of gram equivalents = number of moles $\times $n-factor$=1\times n$ $=n$equivalents.
$n$equivalents of any metal require $n$mole of electrons
$n$equivalents of any metal is deposited using $n\times 96500$coulomb
$\therefore $ one gram equivalents of metal is deposited using $96500$coulomb of charge or one faraday of charge.
Therefore to deposit one gm-equivalent of an element at an electrode, the quantity of electricity needed is $96500$coulombs.
Thus, option (D) is correct.
Note: We should remember that Faraday is the unit of electrical charge and one Faraday is equal to $96500$ coulomb. The quantity of charge in coulombs is divided by the Faraday constant which gives the number of chemical substances that have been oxidised in the unit of mole.
Complete Step by Step Answer:
The current is the flow of electric carriers such as electrons or the flow of the charge per unit of time.
$Q=i\times t$
Here $Q$= Charge
$i=$ Current
$t=$time
When $i=1amp$ $t=1\sec $ Then $Q=1amp\times 1\sec =1coulomb$
We know that one electron is consumed to discharge unit charge, thereby ${{N}_{A}}$electrons are consumed to discharge ${{N}_{A}}$charges (${{N}_{A}}$= Avogadro’s number=$6.023\times {{10}^{23}}$)
Charge of ${{N}_{A}}$electrons $=(1.6\times {{10}^{-19}}coulombs)\times (6.023\times {{10}^{23}})$ [Since the charge of one electron in the S.I unit$=1.6\times {{10}^{-19}}$coulomb]
Or, charge of ${{N}_{A}}$electrons $=96500$coulombs $=1$Faraday
One mole is equal to $6.023\times {{10}^{23}}$no. of electrons.
Let us consider a half-cell reaction on the cathode of any metal ($1$mole)
${{M}^{n+}}+n{{e}^{-}}\to M(s)$
n-factor is the amount of electrons required for deposition of one mole of any metal.
The number of gram equivalents = number of moles $\times $n-factor$=1\times n$ $=n$equivalents.
$n$equivalents of any metal require $n$mole of electrons
$n$equivalents of any metal is deposited using $n\times 96500$coulomb
$\therefore $ one gram equivalents of metal is deposited using $96500$coulomb of charge or one faraday of charge.
Therefore to deposit one gm-equivalent of an element at an electrode, the quantity of electricity needed is $96500$coulombs.
Thus, option (D) is correct.
Note: We should remember that Faraday is the unit of electrical charge and one Faraday is equal to $96500$ coulomb. The quantity of charge in coulombs is divided by the Faraday constant which gives the number of chemical substances that have been oxidised in the unit of mole.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Thermodynamics Class 11 Notes: CBSE Chapter 5

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
