
Three dice are thrown simultaneously. Then find the probability of containing a total of \[17\] or \[18\].
A. \[\dfrac{1}{9}\]
B. \[\dfrac{1}{{72}}\]
C. \[\dfrac{1}{{54}}\]
D. None of these
Answer
162.9k+ views
Hint: In the given question, three dice are thrown simultaneously. The possible number of sample spaces are \[{6^3}\]. Then find the possible number of ways, where the total is \[17\] and \[18\]. By using the probability formula, we will find the probability of containing a total of \[17\] or \[18\].
Formula Used:
Probability Formula:
The probability of an event \[E\] is: \[P\left( E \right) = \dfrac{{The number of favourable outcomes}}{{Total number of outcomes}}\]
Complete step by step solution:
The three dice are thrown simultaneously.
When we throw three dice, then the total number of outcomes is \[{6^3} = 216\]
The sample space for getting a sum of \[17\]: \[\left\{ {\left( {5,6,6} \right),\left( {6,5,6} \right),\left( {6,6,5} \right)} \right\}\]
The sample space for getting a sum of \[18\]: \[\left\{ {\left( {6,6,6} \right)} \right\}\]
So, the number of favourable outcomes is \[ = 4\]
Now apply the probability formula to calculate the probability of containing a total of \[17\] or \[18\].
The probability of containing a total of \[17\] or \[18\]\[ = \dfrac{4}{{216}}\]
\[ \Rightarrow \] The probability of containing a total of \[17\] or \[18\]\[ = \dfrac{1}{{54}}\]
Hence the correct option is C.
Note: Probability means how likely something is to happen. The range of the probability lies between 0 and 1.
The sum of the probabilities of an event and the probability of its complement is 1.
Formula Used:
Probability Formula:
The probability of an event \[E\] is: \[P\left( E \right) = \dfrac{{The number of favourable outcomes}}{{Total number of outcomes}}\]
Complete step by step solution:
The three dice are thrown simultaneously.
When we throw three dice, then the total number of outcomes is \[{6^3} = 216\]
The sample space for getting a sum of \[17\]: \[\left\{ {\left( {5,6,6} \right),\left( {6,5,6} \right),\left( {6,6,5} \right)} \right\}\]
The sample space for getting a sum of \[18\]: \[\left\{ {\left( {6,6,6} \right)} \right\}\]
So, the number of favourable outcomes is \[ = 4\]
Now apply the probability formula to calculate the probability of containing a total of \[17\] or \[18\].
The probability of containing a total of \[17\] or \[18\]\[ = \dfrac{4}{{216}}\]
\[ \Rightarrow \] The probability of containing a total of \[17\] or \[18\]\[ = \dfrac{1}{{54}}\]
Hence the correct option is C.
Note: Probability means how likely something is to happen. The range of the probability lies between 0 and 1.
The sum of the probabilities of an event and the probability of its complement is 1.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
