
Three charges $ - \sqrt 2 \mu C,2\sqrt 2 \mu C$and $ - \sqrt 2 \mu C$ are arranged as shown. Total electric field intensity at P is:

A) $18 \times {10^3}N/C$
B) $\left( {2\sqrt 2 - 1} \right) \times 9 \times {10^3}N/C$
C) Zero
D) $\left( {2\sqrt 2 + 1} \right) \times 9 \times {10^3}N/C$
Answer
221.4k+ views
Hint: We simply apply here formula for electric field intensity at a point due to a point charge. Here in question three charges are given so we find three electric field intensity on point P. To find the net electric field on point P can be calculated by vector addition of all three electric fields.
Complete step by step solution:
Step 1
First we draw diagram mark electric field direction due to all three charges

Here charge ${q_1} = - \sqrt 2 \mu C,{q_2} = 2\sqrt 2 \mu C$ and ${q_3} = - \sqrt 2 \mu C$
Electric field due to charge ${q_1}$ is ${E_1}$ toward charge because of negative charge
Electric field due to charge ${q_2}$ is ${E_2}$ away from ${q_2}$ because of positive charge
Electric field due to ${q_3}$ is ${E_3}$ toward ${q_3}$ because of negative charge
Electric field at a point due to a point charge is given by $E = \dfrac{{kq}}{{{r^2}}}$
Here E is the electric field
k is a constant $k = 9 \times {10^9}$
$r$ Is the distance between charge and point
Calculate ${E_1}$
$ \Rightarrow {E_1} = \dfrac{{k{q_1}}}{{{r^2}}}$
Here $r = \sqrt 2 $ from figure
$ \Rightarrow {E_1} = \dfrac{{k\sqrt 2 \times {{10}^{ - 6}}C}}{{{{\left( {\sqrt 2 } \right)}^2}}}$
$ \Rightarrow {E_1} = \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}N/C$ At ${45^\circ }$ from negative y-axis toward negative x-axis
Electric field due to ${q_2}$
$ \Rightarrow {E_2} = \dfrac{{k{q_2}}}{{{r^2}}}$
Here $r = 1m$ given in question
$ \Rightarrow {E_2} = \dfrac{{k \times 2\sqrt 2 \times {{10}^{ - 6}}}}{1}$
$ \Rightarrow {E_2} = k\left( {2\sqrt 2 \times {{10}^{ - 6}}} \right)N/C$ Toward positive y- axis direction
Now ${E_3}$
$ \Rightarrow {E_3} = \dfrac{{k{q_3}}}{{{r^2}}}$
Here $r = \sqrt 2 m$ from diagram
$ \Rightarrow {E_3} = \dfrac{{k \times \sqrt 2 \times {{10}^{ - 6}}}}{{{{\left( {\sqrt 2 } \right)}^2}}}$
$ \Rightarrow {E_3} = \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}N/C$ At ${45^\circ }$ from negative y-axis toward positive x- axis.
Step 2
We assume net electric field due to all three charges is $E$ then
$ \Rightarrow \overrightarrow E = {\overrightarrow E _1} + {\overrightarrow E _2} + {\overrightarrow E _3}$
We make diagram for ${E_1},{E_2}$ and ${E_3}$ with x-y axis

X component for net electric field ${E_x}$
$ \Rightarrow {E_x} = {E_{1x}} + {E_{2x}} + {E_{3x}}$
$ \Rightarrow {E_x} = - \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}\sin 45 + 0 + \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}\sin 45$
Solving this
$\therefore {E_x} = 0$
Y component of net electric field ${E_y}$
$ \Rightarrow {E_y} = {E_{1y}} + {E_{2y}} + {E_{3y}}$
$ \Rightarrow {E_y} = \left( { - \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}\cos 45} \right) + \left( {k\left( {2\sqrt 2 \times {{10}^{ - 6}}} \right)} \right) + \left( { - \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}\cos 45} \right)$
$ \Rightarrow {E_y} = \left( { - \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }}} \right) + \left( {k \times 2\sqrt 2 \times {{10}^{ - 6}}} \right) + \left( { - \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }}} \right)$
Solving this
$ \Rightarrow {E_y} = \left( {k \times {{10}^{ - 6}}} \right)\left( { - \dfrac{1}{2} + 2\sqrt 2 - \dfrac{1}{2}} \right)$
$ \Rightarrow {E_y} = \left( {k \times {{10}^{ - 6}}} \right)\left( {2\sqrt 2 - 1} \right)$
Put the value of constant k
$k = 9 \times {10^9}$
$ \Rightarrow {E_y} = \left( {9 \times {{10}^9} \times {{10}^{ - 6}}} \right)\left( {2\sqrt 2 - 1} \right)$
Solving again
$ \Rightarrow {E_y} = \left( {2\sqrt 2 - 1} \right)\left( {9 \times {{10}^3}} \right)N/C$
So net electric field
$ \Rightarrow E = \sqrt {{{\left( {{E_x}} \right)}^2} + {{\left( {{E_y}} \right)}^2}} $
$ \Rightarrow E = \sqrt {{{\left( 0 \right)}^2} + {{\left[ {\left( {2\sqrt 2 - 1} \right)\left( {9 \times {{10}^3}} \right)} \right]}^2}} $
Hence
$\therefore E = \left( {2\sqrt 2 - 1} \right)\left( {9 \times {{10}^3}} \right)N/C$
So we find net electric field $\left( {2\sqrt 2 - 1} \right) \times 9 \times {10^3}N/C$
Hence option B is correct
Note: In the question we take direction of electric field in positive charge away from the charge and in case of negative charge take toward the charge reason is electric field line
In positive charge electric field lines go away from the positive charge means appears to emit from positive charge and field lines appear to converse at negative charge. So we take the field direction according to this assumption.
Complete step by step solution:
Step 1
First we draw diagram mark electric field direction due to all three charges

Here charge ${q_1} = - \sqrt 2 \mu C,{q_2} = 2\sqrt 2 \mu C$ and ${q_3} = - \sqrt 2 \mu C$
Electric field due to charge ${q_1}$ is ${E_1}$ toward charge because of negative charge
Electric field due to charge ${q_2}$ is ${E_2}$ away from ${q_2}$ because of positive charge
Electric field due to ${q_3}$ is ${E_3}$ toward ${q_3}$ because of negative charge
Electric field at a point due to a point charge is given by $E = \dfrac{{kq}}{{{r^2}}}$
Here E is the electric field
k is a constant $k = 9 \times {10^9}$
$r$ Is the distance between charge and point
Calculate ${E_1}$
$ \Rightarrow {E_1} = \dfrac{{k{q_1}}}{{{r^2}}}$
Here $r = \sqrt 2 $ from figure
$ \Rightarrow {E_1} = \dfrac{{k\sqrt 2 \times {{10}^{ - 6}}C}}{{{{\left( {\sqrt 2 } \right)}^2}}}$
$ \Rightarrow {E_1} = \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}N/C$ At ${45^\circ }$ from negative y-axis toward negative x-axis
Electric field due to ${q_2}$
$ \Rightarrow {E_2} = \dfrac{{k{q_2}}}{{{r^2}}}$
Here $r = 1m$ given in question
$ \Rightarrow {E_2} = \dfrac{{k \times 2\sqrt 2 \times {{10}^{ - 6}}}}{1}$
$ \Rightarrow {E_2} = k\left( {2\sqrt 2 \times {{10}^{ - 6}}} \right)N/C$ Toward positive y- axis direction
Now ${E_3}$
$ \Rightarrow {E_3} = \dfrac{{k{q_3}}}{{{r^2}}}$
Here $r = \sqrt 2 m$ from diagram
$ \Rightarrow {E_3} = \dfrac{{k \times \sqrt 2 \times {{10}^{ - 6}}}}{{{{\left( {\sqrt 2 } \right)}^2}}}$
$ \Rightarrow {E_3} = \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}N/C$ At ${45^\circ }$ from negative y-axis toward positive x- axis.
Step 2
We assume net electric field due to all three charges is $E$ then
$ \Rightarrow \overrightarrow E = {\overrightarrow E _1} + {\overrightarrow E _2} + {\overrightarrow E _3}$
We make diagram for ${E_1},{E_2}$ and ${E_3}$ with x-y axis

X component for net electric field ${E_x}$
$ \Rightarrow {E_x} = {E_{1x}} + {E_{2x}} + {E_{3x}}$
$ \Rightarrow {E_x} = - \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}\sin 45 + 0 + \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}\sin 45$
Solving this
$\therefore {E_x} = 0$
Y component of net electric field ${E_y}$
$ \Rightarrow {E_y} = {E_{1y}} + {E_{2y}} + {E_{3y}}$
$ \Rightarrow {E_y} = \left( { - \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}\cos 45} \right) + \left( {k\left( {2\sqrt 2 \times {{10}^{ - 6}}} \right)} \right) + \left( { - \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }}\cos 45} \right)$
$ \Rightarrow {E_y} = \left( { - \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }}} \right) + \left( {k \times 2\sqrt 2 \times {{10}^{ - 6}}} \right) + \left( { - \dfrac{{k \times {{10}^{ - 6}}}}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }}} \right)$
Solving this
$ \Rightarrow {E_y} = \left( {k \times {{10}^{ - 6}}} \right)\left( { - \dfrac{1}{2} + 2\sqrt 2 - \dfrac{1}{2}} \right)$
$ \Rightarrow {E_y} = \left( {k \times {{10}^{ - 6}}} \right)\left( {2\sqrt 2 - 1} \right)$
Put the value of constant k
$k = 9 \times {10^9}$
$ \Rightarrow {E_y} = \left( {9 \times {{10}^9} \times {{10}^{ - 6}}} \right)\left( {2\sqrt 2 - 1} \right)$
Solving again
$ \Rightarrow {E_y} = \left( {2\sqrt 2 - 1} \right)\left( {9 \times {{10}^3}} \right)N/C$
So net electric field
$ \Rightarrow E = \sqrt {{{\left( {{E_x}} \right)}^2} + {{\left( {{E_y}} \right)}^2}} $
$ \Rightarrow E = \sqrt {{{\left( 0 \right)}^2} + {{\left[ {\left( {2\sqrt 2 - 1} \right)\left( {9 \times {{10}^3}} \right)} \right]}^2}} $
Hence
$\therefore E = \left( {2\sqrt 2 - 1} \right)\left( {9 \times {{10}^3}} \right)N/C$
So we find net electric field $\left( {2\sqrt 2 - 1} \right) \times 9 \times {10^3}N/C$
Hence option B is correct
Note: In the question we take direction of electric field in positive charge away from the charge and in case of negative charge take toward the charge reason is electric field line
In positive charge electric field lines go away from the positive charge means appears to emit from positive charge and field lines appear to converse at negative charge. So we take the field direction according to this assumption.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

