
The vertices of a triangle are $\left( {a{t_1}{t_2},a\left( {{t_1} + {t_2}} \right)} \right),\left( {a{t_2}{t_3},a\left( {{t_2} + {t_3}} \right)} \right),\left( {a{t_3}{t_1},a\left( {{t_3} + {t_1}} \right)} \right)$. Find the coordinates of its orthocentre.
Answer
163.8k+ views
Hint: The point of intersection of the altitudes of a triangle is known as the orthocentre of the triangle. Here the coordinates of three vertices of a triangle are given. Find the equations of any two altitudes of the triangle using point-slope form and solve it to get the point of intersection.
Formula Used:
Slope of the line passes through the points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
If two lines having slopes ${m_1}$ and ${m_2}$ are perpendicular, then product of the slopes is ${m_1}{m_2} = - 1$
Complete step by step solution:
Let us find the equations of any two altitudes of the triangle using point-slope form.
Let the triangle be $ABC$ in which $A = \left( {a{t_1}{t_2},a\left( {{t_1} + {t_2}} \right)} \right),B = \left( {a{t_2}{t_3},a\left( {{t_2} + {t_3}} \right)} \right),C = \left( {a{t_3}{t_1},a\left( {{t_3} + {t_1}} \right)} \right)$
The values of ${t_1},{t_2},{t_3}$ must not be equal because in that case the points become collinear and hence no triangles will be formed.
Let us find the equation of the altitude through the vertex $A$.
Slope of the side $BC$ is ${m_1} = \dfrac{{\left\{ {a\left( {{t_3} + {t_1}} \right)} \right\} - \left\{ {a\left( {{t_2} + {t_3}} \right)} \right\}}}{{\left( {a{t_3}{t_1}} \right) - \left( {a{t_2}{t_3}} \right)}} = \dfrac{{a{t_3} + a{t_1} - a{t_2} - a{t_3}}}{{a{t_3}{t_1} - a{t_2}{t_3}}} = \dfrac{{a\left( {{t_1} - {t_2}} \right)}}{{a{t_3}\left( {{t_1} - {t_2}} \right)}} = \dfrac{1}{{{t_3}}}$
If two lines having slopes ${m_1}$ and ${m_2}$ are perpendicular, then product of the slopes is ${m_1}{m_2} = - 1$
So, the slope of the altitude through the vertex $A$ is ${m_2} = - {t_3}$
Since, the altitude passes through the vertex $A = \left( {a{t_1}{t_2},a\left( {{t_1} + {t_2}} \right)} \right)$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
So, equation of the altitude is $\dfrac{{y - a\left( {{t_1} + {t_2}} \right)}}{{x - a{t_1}{t_2}}} = - {t_3}$
Simplify the equation of the line.
$ \Rightarrow y - a\left( {{t_1} + {t_2}} \right) = - {t_3}\left( {x - a{t_1}{t_2}} \right)\\ \Rightarrow y - a\left( {{t_1} + {t_2}} \right) = - {t_3}x + a{t_1}{t_2}{t_3}\\ \Rightarrow y = - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right)$
So, the equation of the altitude through the point $A$ is $y = - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right).....\left( i \right)$
Let us find the equation of the altitude through the vertex $C$.
Slope of the side $AB$ is ${m_3} = \dfrac{{\left\{ {a\left( {{t_2} + {t_3}} \right)} \right\} - \left\{ {a\left( {{t_1} + {t_2}} \right)} \right\}}}{{\left( {a{t_2}{t_3}} \right) - \left( {a{t_1}{t_2}} \right)}} = \dfrac{{a{t_2} + a{t_3} - a{t_1} - a{t_2}}}{{a{t_2}{t_3} - a{t_1}{t_2}}} = \dfrac{{a\left( {{t_3} - {t_1}} \right)}}{{a{t_2}\left( {{t_3} - {t_1}} \right)}} = \dfrac{1}{{{t_2}}}$
If two lines having slopes ${m_3}$ and ${m_4}$ are perpendicular, then product of the slopes is ${m_3}{m_4} = - 1$
So, the slope of the altitude through the vertex $C$ is ${m_4} = - {t_2}$
Since, the altitude passes through the vertex $C = \left( {a{t_3}{t_1},a\left( {{t_3} + {t_1}} \right)} \right)$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
So, equation of the altitude is $\dfrac{{y - a\left( {{t_3} + {t_1}} \right)}}{{x - a{t_3}{t_1}}} = - {t_2}$
Simplify the equation of the line.
$ \Rightarrow y - a\left( {{t_3} + {t_1}} \right) = - {t_2}\left( {x - a{t_3}{t_1}} \right)\\ \Rightarrow y - a\left( {{t_3} + {t_1}} \right) = - {t_2}x + a{t_1}{t_2}{t_3}\\ \Rightarrow y = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right)$
So, the equation of the altitude through the vertex $C$ is $y = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right).....\left( {ii} \right)$
Now, solve equations $\left( i \right)$ and $\left( {ii} \right)$ to get the point of intersections of these two altitudes.
From equations $\left( i \right)$ and $\left( {ii} \right)$, we get
$ - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right) = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right)$
Cancel the term $a{t_1}{t_2}{t_3}$ from both sides.
$ \Rightarrow - {t_3}x + a\left( {{t_1} + {t_2}} \right) = - {t_2}x + a\left( {{t_3} + {t_1}} \right)$
Solve this equation to get the value of $x$
$ \Rightarrow {t_2}x - {t_3}x = a\left( {{t_3} + {t_1}} \right) - a\left( {{t_1} + {t_2}} \right)\\ \Rightarrow \left( {{t_2} - {t_3}} \right)x = a\left( {{t_3} + {t_1} - {t_1} - {t_2}} \right)\\ \Rightarrow \left( {{t_2} - {t_3}} \right)x = a\left( {{t_3} - {t_2}} \right)$
Take out $\left( { - 1} \right)$ as common from the expression of the right hand side.
$ \Rightarrow \left( {{t_2} - {t_3}} \right)x = - a\left( {{t_2} - {t_3}} \right)\\ \Rightarrow x = - \dfrac{{a\left( {{t_2} - {t_3}} \right)}}{{\left( {{t_2} - {t_3}} \right)}}$
, so the term $\left( {{t_2} - {t_3}} \right)$ will be canceled out.
$ \Rightarrow x = - a$
Put the value of $x$ in equation $\left( i \right)$ to find the value of $y$.
$y = - {t_3}\left( { - a} \right) + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right) = a{t_3} + a{t_1}{t_2}{t_3} + a{t_1} + a{t_2} = a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)$
Finally, we get $x = - a$ and $y = a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)$
So, the point of intersection of the two altitudes is $\left( { - a,a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)} \right)$.
$\therefore $The orthocentre of the triangle $ABC$ is $\left( { - a,a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)} \right)$
Note: Many students get confused about the orthocentre, circumcentre and the centroid. You should remember that the point of intersection of the altitudes of a triangle is known as orthocentre of the triangle and the point of intersection of the medians of a triangle is known as centroid of the triangle and the point of intersection of the perpendicular bisectors of the sides of a triangle is known as the circumcentre of the triangle and the point of intersection of the medians of a triangle is known as centroid of the triangle. Solving two equations of two straight lines, we obtain the point of intersection of the two straight lines. If there is no solution, then it means that the two lines do not intersect.
Formula Used:
Slope of the line passes through the points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
If two lines having slopes ${m_1}$ and ${m_2}$ are perpendicular, then product of the slopes is ${m_1}{m_2} = - 1$
Complete step by step solution:
Let us find the equations of any two altitudes of the triangle using point-slope form.
Let the triangle be $ABC$ in which $A = \left( {a{t_1}{t_2},a\left( {{t_1} + {t_2}} \right)} \right),B = \left( {a{t_2}{t_3},a\left( {{t_2} + {t_3}} \right)} \right),C = \left( {a{t_3}{t_1},a\left( {{t_3} + {t_1}} \right)} \right)$
The values of ${t_1},{t_2},{t_3}$ must not be equal because in that case the points become collinear and hence no triangles will be formed.
Let us find the equation of the altitude through the vertex $A$.
Slope of the side $BC$ is ${m_1} = \dfrac{{\left\{ {a\left( {{t_3} + {t_1}} \right)} \right\} - \left\{ {a\left( {{t_2} + {t_3}} \right)} \right\}}}{{\left( {a{t_3}{t_1}} \right) - \left( {a{t_2}{t_3}} \right)}} = \dfrac{{a{t_3} + a{t_1} - a{t_2} - a{t_3}}}{{a{t_3}{t_1} - a{t_2}{t_3}}} = \dfrac{{a\left( {{t_1} - {t_2}} \right)}}{{a{t_3}\left( {{t_1} - {t_2}} \right)}} = \dfrac{1}{{{t_3}}}$
If two lines having slopes ${m_1}$ and ${m_2}$ are perpendicular, then product of the slopes is ${m_1}{m_2} = - 1$
So, the slope of the altitude through the vertex $A$ is ${m_2} = - {t_3}$
Since, the altitude passes through the vertex $A = \left( {a{t_1}{t_2},a\left( {{t_1} + {t_2}} \right)} \right)$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
So, equation of the altitude is $\dfrac{{y - a\left( {{t_1} + {t_2}} \right)}}{{x - a{t_1}{t_2}}} = - {t_3}$
Simplify the equation of the line.
$ \Rightarrow y - a\left( {{t_1} + {t_2}} \right) = - {t_3}\left( {x - a{t_1}{t_2}} \right)\\ \Rightarrow y - a\left( {{t_1} + {t_2}} \right) = - {t_3}x + a{t_1}{t_2}{t_3}\\ \Rightarrow y = - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right)$
So, the equation of the altitude through the point $A$ is $y = - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right).....\left( i \right)$
Let us find the equation of the altitude through the vertex $C$.
Slope of the side $AB$ is ${m_3} = \dfrac{{\left\{ {a\left( {{t_2} + {t_3}} \right)} \right\} - \left\{ {a\left( {{t_1} + {t_2}} \right)} \right\}}}{{\left( {a{t_2}{t_3}} \right) - \left( {a{t_1}{t_2}} \right)}} = \dfrac{{a{t_2} + a{t_3} - a{t_1} - a{t_2}}}{{a{t_2}{t_3} - a{t_1}{t_2}}} = \dfrac{{a\left( {{t_3} - {t_1}} \right)}}{{a{t_2}\left( {{t_3} - {t_1}} \right)}} = \dfrac{1}{{{t_2}}}$
If two lines having slopes ${m_3}$ and ${m_4}$ are perpendicular, then product of the slopes is ${m_3}{m_4} = - 1$
So, the slope of the altitude through the vertex $C$ is ${m_4} = - {t_2}$
Since, the altitude passes through the vertex $C = \left( {a{t_3}{t_1},a\left( {{t_3} + {t_1}} \right)} \right)$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
So, equation of the altitude is $\dfrac{{y - a\left( {{t_3} + {t_1}} \right)}}{{x - a{t_3}{t_1}}} = - {t_2}$
Simplify the equation of the line.
$ \Rightarrow y - a\left( {{t_3} + {t_1}} \right) = - {t_2}\left( {x - a{t_3}{t_1}} \right)\\ \Rightarrow y - a\left( {{t_3} + {t_1}} \right) = - {t_2}x + a{t_1}{t_2}{t_3}\\ \Rightarrow y = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right)$
So, the equation of the altitude through the vertex $C$ is $y = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right).....\left( {ii} \right)$
Now, solve equations $\left( i \right)$ and $\left( {ii} \right)$ to get the point of intersections of these two altitudes.
From equations $\left( i \right)$ and $\left( {ii} \right)$, we get
$ - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right) = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right)$
Cancel the term $a{t_1}{t_2}{t_3}$ from both sides.
$ \Rightarrow - {t_3}x + a\left( {{t_1} + {t_2}} \right) = - {t_2}x + a\left( {{t_3} + {t_1}} \right)$
Solve this equation to get the value of $x$
$ \Rightarrow {t_2}x - {t_3}x = a\left( {{t_3} + {t_1}} \right) - a\left( {{t_1} + {t_2}} \right)\\ \Rightarrow \left( {{t_2} - {t_3}} \right)x = a\left( {{t_3} + {t_1} - {t_1} - {t_2}} \right)\\ \Rightarrow \left( {{t_2} - {t_3}} \right)x = a\left( {{t_3} - {t_2}} \right)$
Take out $\left( { - 1} \right)$ as common from the expression of the right hand side.
$ \Rightarrow \left( {{t_2} - {t_3}} \right)x = - a\left( {{t_2} - {t_3}} \right)\\ \Rightarrow x = - \dfrac{{a\left( {{t_2} - {t_3}} \right)}}{{\left( {{t_2} - {t_3}} \right)}}$
, so the term $\left( {{t_2} - {t_3}} \right)$ will be canceled out.
$ \Rightarrow x = - a$
Put the value of $x$ in equation $\left( i \right)$ to find the value of $y$.
$y = - {t_3}\left( { - a} \right) + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right) = a{t_3} + a{t_1}{t_2}{t_3} + a{t_1} + a{t_2} = a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)$
Finally, we get $x = - a$ and $y = a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)$
So, the point of intersection of the two altitudes is $\left( { - a,a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)} \right)$.
$\therefore $The orthocentre of the triangle $ABC$ is $\left( { - a,a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)} \right)$
Note: Many students get confused about the orthocentre, circumcentre and the centroid. You should remember that the point of intersection of the altitudes of a triangle is known as orthocentre of the triangle and the point of intersection of the medians of a triangle is known as centroid of the triangle and the point of intersection of the perpendicular bisectors of the sides of a triangle is known as the circumcentre of the triangle and the point of intersection of the medians of a triangle is known as centroid of the triangle. Solving two equations of two straight lines, we obtain the point of intersection of the two straight lines. If there is no solution, then it means that the two lines do not intersect.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
