
The vertices of a triangle are $\left( {a{t_1}{t_2},a\left( {{t_1} + {t_2}} \right)} \right),\left( {a{t_2}{t_3},a\left( {{t_2} + {t_3}} \right)} \right),\left( {a{t_3}{t_1},a\left( {{t_3} + {t_1}} \right)} \right)$. Find the coordinates of its orthocentre.
Answer
217.2k+ views
Hint: The point of intersection of the altitudes of a triangle is known as the orthocentre of the triangle. Here the coordinates of three vertices of a triangle are given. Find the equations of any two altitudes of the triangle using point-slope form and solve it to get the point of intersection.
Formula Used:
Slope of the line passes through the points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
If two lines having slopes ${m_1}$ and ${m_2}$ are perpendicular, then product of the slopes is ${m_1}{m_2} = - 1$
Complete step by step solution:
Let us find the equations of any two altitudes of the triangle using point-slope form.
Let the triangle be $ABC$ in which $A = \left( {a{t_1}{t_2},a\left( {{t_1} + {t_2}} \right)} \right),B = \left( {a{t_2}{t_3},a\left( {{t_2} + {t_3}} \right)} \right),C = \left( {a{t_3}{t_1},a\left( {{t_3} + {t_1}} \right)} \right)$
The values of ${t_1},{t_2},{t_3}$ must not be equal because in that case the points become collinear and hence no triangles will be formed.
Let us find the equation of the altitude through the vertex $A$.
Slope of the side $BC$ is ${m_1} = \dfrac{{\left\{ {a\left( {{t_3} + {t_1}} \right)} \right\} - \left\{ {a\left( {{t_2} + {t_3}} \right)} \right\}}}{{\left( {a{t_3}{t_1}} \right) - \left( {a{t_2}{t_3}} \right)}} = \dfrac{{a{t_3} + a{t_1} - a{t_2} - a{t_3}}}{{a{t_3}{t_1} - a{t_2}{t_3}}} = \dfrac{{a\left( {{t_1} - {t_2}} \right)}}{{a{t_3}\left( {{t_1} - {t_2}} \right)}} = \dfrac{1}{{{t_3}}}$
If two lines having slopes ${m_1}$ and ${m_2}$ are perpendicular, then product of the slopes is ${m_1}{m_2} = - 1$
So, the slope of the altitude through the vertex $A$ is ${m_2} = - {t_3}$
Since, the altitude passes through the vertex $A = \left( {a{t_1}{t_2},a\left( {{t_1} + {t_2}} \right)} \right)$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
So, equation of the altitude is $\dfrac{{y - a\left( {{t_1} + {t_2}} \right)}}{{x - a{t_1}{t_2}}} = - {t_3}$
Simplify the equation of the line.
$ \Rightarrow y - a\left( {{t_1} + {t_2}} \right) = - {t_3}\left( {x - a{t_1}{t_2}} \right)\\ \Rightarrow y - a\left( {{t_1} + {t_2}} \right) = - {t_3}x + a{t_1}{t_2}{t_3}\\ \Rightarrow y = - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right)$
So, the equation of the altitude through the point $A$ is $y = - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right).....\left( i \right)$
Let us find the equation of the altitude through the vertex $C$.
Slope of the side $AB$ is ${m_3} = \dfrac{{\left\{ {a\left( {{t_2} + {t_3}} \right)} \right\} - \left\{ {a\left( {{t_1} + {t_2}} \right)} \right\}}}{{\left( {a{t_2}{t_3}} \right) - \left( {a{t_1}{t_2}} \right)}} = \dfrac{{a{t_2} + a{t_3} - a{t_1} - a{t_2}}}{{a{t_2}{t_3} - a{t_1}{t_2}}} = \dfrac{{a\left( {{t_3} - {t_1}} \right)}}{{a{t_2}\left( {{t_3} - {t_1}} \right)}} = \dfrac{1}{{{t_2}}}$
If two lines having slopes ${m_3}$ and ${m_4}$ are perpendicular, then product of the slopes is ${m_3}{m_4} = - 1$
So, the slope of the altitude through the vertex $C$ is ${m_4} = - {t_2}$
Since, the altitude passes through the vertex $C = \left( {a{t_3}{t_1},a\left( {{t_3} + {t_1}} \right)} \right)$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
So, equation of the altitude is $\dfrac{{y - a\left( {{t_3} + {t_1}} \right)}}{{x - a{t_3}{t_1}}} = - {t_2}$
Simplify the equation of the line.
$ \Rightarrow y - a\left( {{t_3} + {t_1}} \right) = - {t_2}\left( {x - a{t_3}{t_1}} \right)\\ \Rightarrow y - a\left( {{t_3} + {t_1}} \right) = - {t_2}x + a{t_1}{t_2}{t_3}\\ \Rightarrow y = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right)$
So, the equation of the altitude through the vertex $C$ is $y = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right).....\left( {ii} \right)$
Now, solve equations $\left( i \right)$ and $\left( {ii} \right)$ to get the point of intersections of these two altitudes.
From equations $\left( i \right)$ and $\left( {ii} \right)$, we get
$ - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right) = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right)$
Cancel the term $a{t_1}{t_2}{t_3}$ from both sides.
$ \Rightarrow - {t_3}x + a\left( {{t_1} + {t_2}} \right) = - {t_2}x + a\left( {{t_3} + {t_1}} \right)$
Solve this equation to get the value of $x$
$ \Rightarrow {t_2}x - {t_3}x = a\left( {{t_3} + {t_1}} \right) - a\left( {{t_1} + {t_2}} \right)\\ \Rightarrow \left( {{t_2} - {t_3}} \right)x = a\left( {{t_3} + {t_1} - {t_1} - {t_2}} \right)\\ \Rightarrow \left( {{t_2} - {t_3}} \right)x = a\left( {{t_3} - {t_2}} \right)$
Take out $\left( { - 1} \right)$ as common from the expression of the right hand side.
$ \Rightarrow \left( {{t_2} - {t_3}} \right)x = - a\left( {{t_2} - {t_3}} \right)\\ \Rightarrow x = - \dfrac{{a\left( {{t_2} - {t_3}} \right)}}{{\left( {{t_2} - {t_3}} \right)}}$
, so the term $\left( {{t_2} - {t_3}} \right)$ will be canceled out.
$ \Rightarrow x = - a$
Put the value of $x$ in equation $\left( i \right)$ to find the value of $y$.
$y = - {t_3}\left( { - a} \right) + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right) = a{t_3} + a{t_1}{t_2}{t_3} + a{t_1} + a{t_2} = a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)$
Finally, we get $x = - a$ and $y = a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)$
So, the point of intersection of the two altitudes is $\left( { - a,a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)} \right)$.
$\therefore $The orthocentre of the triangle $ABC$ is $\left( { - a,a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)} \right)$
Note: Many students get confused about the orthocentre, circumcentre and the centroid. You should remember that the point of intersection of the altitudes of a triangle is known as orthocentre of the triangle and the point of intersection of the medians of a triangle is known as centroid of the triangle and the point of intersection of the perpendicular bisectors of the sides of a triangle is known as the circumcentre of the triangle and the point of intersection of the medians of a triangle is known as centroid of the triangle. Solving two equations of two straight lines, we obtain the point of intersection of the two straight lines. If there is no solution, then it means that the two lines do not intersect.
Formula Used:
Slope of the line passes through the points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
If two lines having slopes ${m_1}$ and ${m_2}$ are perpendicular, then product of the slopes is ${m_1}{m_2} = - 1$
Complete step by step solution:
Let us find the equations of any two altitudes of the triangle using point-slope form.
Let the triangle be $ABC$ in which $A = \left( {a{t_1}{t_2},a\left( {{t_1} + {t_2}} \right)} \right),B = \left( {a{t_2}{t_3},a\left( {{t_2} + {t_3}} \right)} \right),C = \left( {a{t_3}{t_1},a\left( {{t_3} + {t_1}} \right)} \right)$
The values of ${t_1},{t_2},{t_3}$ must not be equal because in that case the points become collinear and hence no triangles will be formed.
Let us find the equation of the altitude through the vertex $A$.
Slope of the side $BC$ is ${m_1} = \dfrac{{\left\{ {a\left( {{t_3} + {t_1}} \right)} \right\} - \left\{ {a\left( {{t_2} + {t_3}} \right)} \right\}}}{{\left( {a{t_3}{t_1}} \right) - \left( {a{t_2}{t_3}} \right)}} = \dfrac{{a{t_3} + a{t_1} - a{t_2} - a{t_3}}}{{a{t_3}{t_1} - a{t_2}{t_3}}} = \dfrac{{a\left( {{t_1} - {t_2}} \right)}}{{a{t_3}\left( {{t_1} - {t_2}} \right)}} = \dfrac{1}{{{t_3}}}$
If two lines having slopes ${m_1}$ and ${m_2}$ are perpendicular, then product of the slopes is ${m_1}{m_2} = - 1$
So, the slope of the altitude through the vertex $A$ is ${m_2} = - {t_3}$
Since, the altitude passes through the vertex $A = \left( {a{t_1}{t_2},a\left( {{t_1} + {t_2}} \right)} \right)$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
So, equation of the altitude is $\dfrac{{y - a\left( {{t_1} + {t_2}} \right)}}{{x - a{t_1}{t_2}}} = - {t_3}$
Simplify the equation of the line.
$ \Rightarrow y - a\left( {{t_1} + {t_2}} \right) = - {t_3}\left( {x - a{t_1}{t_2}} \right)\\ \Rightarrow y - a\left( {{t_1} + {t_2}} \right) = - {t_3}x + a{t_1}{t_2}{t_3}\\ \Rightarrow y = - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right)$
So, the equation of the altitude through the point $A$ is $y = - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right).....\left( i \right)$
Let us find the equation of the altitude through the vertex $C$.
Slope of the side $AB$ is ${m_3} = \dfrac{{\left\{ {a\left( {{t_2} + {t_3}} \right)} \right\} - \left\{ {a\left( {{t_1} + {t_2}} \right)} \right\}}}{{\left( {a{t_2}{t_3}} \right) - \left( {a{t_1}{t_2}} \right)}} = \dfrac{{a{t_2} + a{t_3} - a{t_1} - a{t_2}}}{{a{t_2}{t_3} - a{t_1}{t_2}}} = \dfrac{{a\left( {{t_3} - {t_1}} \right)}}{{a{t_2}\left( {{t_3} - {t_1}} \right)}} = \dfrac{1}{{{t_2}}}$
If two lines having slopes ${m_3}$ and ${m_4}$ are perpendicular, then product of the slopes is ${m_3}{m_4} = - 1$
So, the slope of the altitude through the vertex $C$ is ${m_4} = - {t_2}$
Since, the altitude passes through the vertex $C = \left( {a{t_3}{t_1},a\left( {{t_3} + {t_1}} \right)} \right)$
Equation of a line passes through the points $A\left( {{x_1},{y_1}} \right)$ and having slope $m$ is given by$\dfrac{{y - {y_1}}}{{x - {x_1}}} = m$
So, equation of the altitude is $\dfrac{{y - a\left( {{t_3} + {t_1}} \right)}}{{x - a{t_3}{t_1}}} = - {t_2}$
Simplify the equation of the line.
$ \Rightarrow y - a\left( {{t_3} + {t_1}} \right) = - {t_2}\left( {x - a{t_3}{t_1}} \right)\\ \Rightarrow y - a\left( {{t_3} + {t_1}} \right) = - {t_2}x + a{t_1}{t_2}{t_3}\\ \Rightarrow y = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right)$
So, the equation of the altitude through the vertex $C$ is $y = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right).....\left( {ii} \right)$
Now, solve equations $\left( i \right)$ and $\left( {ii} \right)$ to get the point of intersections of these two altitudes.
From equations $\left( i \right)$ and $\left( {ii} \right)$, we get
$ - {t_3}x + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right) = - {t_2}x + a{t_1}{t_2}{t_3} + a\left( {{t_3} + {t_1}} \right)$
Cancel the term $a{t_1}{t_2}{t_3}$ from both sides.
$ \Rightarrow - {t_3}x + a\left( {{t_1} + {t_2}} \right) = - {t_2}x + a\left( {{t_3} + {t_1}} \right)$
Solve this equation to get the value of $x$
$ \Rightarrow {t_2}x - {t_3}x = a\left( {{t_3} + {t_1}} \right) - a\left( {{t_1} + {t_2}} \right)\\ \Rightarrow \left( {{t_2} - {t_3}} \right)x = a\left( {{t_3} + {t_1} - {t_1} - {t_2}} \right)\\ \Rightarrow \left( {{t_2} - {t_3}} \right)x = a\left( {{t_3} - {t_2}} \right)$
Take out $\left( { - 1} \right)$ as common from the expression of the right hand side.
$ \Rightarrow \left( {{t_2} - {t_3}} \right)x = - a\left( {{t_2} - {t_3}} \right)\\ \Rightarrow x = - \dfrac{{a\left( {{t_2} - {t_3}} \right)}}{{\left( {{t_2} - {t_3}} \right)}}$
, so the term $\left( {{t_2} - {t_3}} \right)$ will be canceled out.
$ \Rightarrow x = - a$
Put the value of $x$ in equation $\left( i \right)$ to find the value of $y$.
$y = - {t_3}\left( { - a} \right) + a{t_1}{t_2}{t_3} + a\left( {{t_1} + {t_2}} \right) = a{t_3} + a{t_1}{t_2}{t_3} + a{t_1} + a{t_2} = a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)$
Finally, we get $x = - a$ and $y = a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)$
So, the point of intersection of the two altitudes is $\left( { - a,a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)} \right)$.
$\therefore $The orthocentre of the triangle $ABC$ is $\left( { - a,a\left( {{t_1} + {t_2} + {t_3} + {t_1}{t_2}{t_3}} \right)} \right)$
Note: Many students get confused about the orthocentre, circumcentre and the centroid. You should remember that the point of intersection of the altitudes of a triangle is known as orthocentre of the triangle and the point of intersection of the medians of a triangle is known as centroid of the triangle and the point of intersection of the perpendicular bisectors of the sides of a triangle is known as the circumcentre of the triangle and the point of intersection of the medians of a triangle is known as centroid of the triangle. Solving two equations of two straight lines, we obtain the point of intersection of the two straight lines. If there is no solution, then it means that the two lines do not intersect.
Recently Updated Pages
Geometry of Complex Numbers Explained

Graphical Methods of Vector Addition Explained Simply

Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

