
The value of the series \[{{\left( x+\dfrac{1}{x} \right)}^{2}}+{{\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)}^{2}}+{{\left( x+\dfrac{1}{{{x}^{3}}} \right)}^{2}}...\] up to \[n\] terms is
A. \[\dfrac{{{x}^{2n}}-1}{{{x}^{2}}-1}\times \dfrac{{{x}^{2n+2}}+1}{{{x}^{2n}}}+2n\]
B. \[\dfrac{{{x}^{2n}}+1}{{{x}^{2}}+1}\times \dfrac{{{x}^{2n+2}}-1}{{{x}^{2n}}}-2n\]
C. \[\dfrac{{{x}^{2n}}-1}{{{x}^{2}}-1}\times \dfrac{{{x}^{2n+2}}-1}{{{x}^{2n}}}-2n\]
D. None of these
Answer
232.8k+ views
Hint: In this question, we have to find the sum of the given series. For, this the type of the series is to be known. By splitting the given series, we get two different series of the same type. Once the type of the series is known, we can easily calculate their sums. By simplifying them, we get the required value.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - is Common ratio.
Some of the important formulae:
$\begin{align}
& {{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& {{(x+\dfrac{1}{x})}^{2}}={{x}^{2}}+2+\dfrac{1}{{{x}^{2}}} \\
& {{(x-\dfrac{1}{x})}^{2}}={{x}^{2}}-2+\dfrac{1}{{{x}^{2}}} \\
\end{align}$
Complete step by step solution: Given series is
\[{{\left( x+\dfrac{1}{x} \right)}^{2}}+{{\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)}^{2}}+{{\left( x+\dfrac{1}{{{x}^{3}}} \right)}^{2}}...\]
Then, consider the given series as
\[A=\left( {{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \right)+\left( \dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \right)+2n\text{ }...(1)\]
So, the sub-series formed in the main series are:
\[{{I}_{1}}={{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms}\]
\[{{I}_{2}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms}\]
Then, their sums are calculated as follows:
\[\begin{align}
& {{I}_{1}}={{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \\
& a={{x}^{2}};r={{x}^{2}}; \\
& {{I}_{1}}=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}\text{ }...(2) \\
\end{align}\]
And
\[\begin{align}
& {{I}_{2}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \\
& a=\dfrac{1}{{{x}^{2}}};r=\dfrac{1}{{{x}^{2}}} \\
& {{I}_{2}}=\dfrac{\dfrac{1}{{{x}^{2}}}\left( 1-\dfrac{1}{{{x}^{2n}}} \right)}{1-\dfrac{1}{{{x}^{2}}}}\text{ }...(3) \\
\end{align}\]
Then, on substituting (2) and (3) in (1), we get
\[\begin{align}
& A=\left( {{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \right)+\left( \dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \right)+2n \\
& \text{ }=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}+\dfrac{\dfrac{1}{{{x}^{2}}}\left( 1-\dfrac{1}{{{x}^{2n}}} \right)}{1-\dfrac{1}{{{x}^{2}}}}+2n \\
& \text{ }=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}+\dfrac{{{x}^{2n}}-1}{({{x}^{2}}-1){{x}^{2n}}}+2n \\
& \text{ }=\dfrac{{{x}^{2n+2}}({{x}^{2n}}-1)+\left( {{x}^{2n}}-1 \right)}{{{x}^{2n}}({{x}^{2}}-1)}+2n \\
& \text{ }=\dfrac{({{x}^{2n}}-1)}{({{x}^{2}}-1)}\times \dfrac{\left( {{x}^{2n+2}}+1 \right)}{{{x}^{2n}}}+2n \\
\end{align}\]
Option ‘A’ is correct
Note: Here we may forget to split the series into two other series. If we forget to split, the calculation may become difficult. To avoid that, we need to split the series into two and find their sum separately. Then, adding those sums, we get the required expression on simplifying.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - is Common ratio.
Some of the important formulae:
$\begin{align}
& {{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& {{(x+\dfrac{1}{x})}^{2}}={{x}^{2}}+2+\dfrac{1}{{{x}^{2}}} \\
& {{(x-\dfrac{1}{x})}^{2}}={{x}^{2}}-2+\dfrac{1}{{{x}^{2}}} \\
\end{align}$
Complete step by step solution: Given series is
\[{{\left( x+\dfrac{1}{x} \right)}^{2}}+{{\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)}^{2}}+{{\left( x+\dfrac{1}{{{x}^{3}}} \right)}^{2}}...\]
Then, consider the given series as
\[A=\left( {{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \right)+\left( \dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \right)+2n\text{ }...(1)\]
So, the sub-series formed in the main series are:
\[{{I}_{1}}={{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms}\]
\[{{I}_{2}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms}\]
Then, their sums are calculated as follows:
\[\begin{align}
& {{I}_{1}}={{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \\
& a={{x}^{2}};r={{x}^{2}}; \\
& {{I}_{1}}=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}\text{ }...(2) \\
\end{align}\]
And
\[\begin{align}
& {{I}_{2}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \\
& a=\dfrac{1}{{{x}^{2}}};r=\dfrac{1}{{{x}^{2}}} \\
& {{I}_{2}}=\dfrac{\dfrac{1}{{{x}^{2}}}\left( 1-\dfrac{1}{{{x}^{2n}}} \right)}{1-\dfrac{1}{{{x}^{2}}}}\text{ }...(3) \\
\end{align}\]
Then, on substituting (2) and (3) in (1), we get
\[\begin{align}
& A=\left( {{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \right)+\left( \dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \right)+2n \\
& \text{ }=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}+\dfrac{\dfrac{1}{{{x}^{2}}}\left( 1-\dfrac{1}{{{x}^{2n}}} \right)}{1-\dfrac{1}{{{x}^{2}}}}+2n \\
& \text{ }=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}+\dfrac{{{x}^{2n}}-1}{({{x}^{2}}-1){{x}^{2n}}}+2n \\
& \text{ }=\dfrac{{{x}^{2n+2}}({{x}^{2n}}-1)+\left( {{x}^{2n}}-1 \right)}{{{x}^{2n}}({{x}^{2}}-1)}+2n \\
& \text{ }=\dfrac{({{x}^{2n}}-1)}{({{x}^{2}}-1)}\times \dfrac{\left( {{x}^{2n+2}}+1 \right)}{{{x}^{2n}}}+2n \\
\end{align}\]
Option ‘A’ is correct
Note: Here we may forget to split the series into two other series. If we forget to split, the calculation may become difficult. To avoid that, we need to split the series into two and find their sum separately. Then, adding those sums, we get the required expression on simplifying.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

