
The value of the series \[{{\left( x+\dfrac{1}{x} \right)}^{2}}+{{\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)}^{2}}+{{\left( x+\dfrac{1}{{{x}^{3}}} \right)}^{2}}...\] up to \[n\] terms is
A. \[\dfrac{{{x}^{2n}}-1}{{{x}^{2}}-1}\times \dfrac{{{x}^{2n+2}}+1}{{{x}^{2n}}}+2n\]
B. \[\dfrac{{{x}^{2n}}+1}{{{x}^{2}}+1}\times \dfrac{{{x}^{2n+2}}-1}{{{x}^{2n}}}-2n\]
C. \[\dfrac{{{x}^{2n}}-1}{{{x}^{2}}-1}\times \dfrac{{{x}^{2n+2}}-1}{{{x}^{2n}}}-2n\]
D. None of these
Answer
218.4k+ views
Hint: In this question, we have to find the sum of the given series. For, this the type of the series is to be known. By splitting the given series, we get two different series of the same type. Once the type of the series is known, we can easily calculate their sums. By simplifying them, we get the required value.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - is Common ratio.
Some of the important formulae:
$\begin{align}
& {{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& {{(x+\dfrac{1}{x})}^{2}}={{x}^{2}}+2+\dfrac{1}{{{x}^{2}}} \\
& {{(x-\dfrac{1}{x})}^{2}}={{x}^{2}}-2+\dfrac{1}{{{x}^{2}}} \\
\end{align}$
Complete step by step solution: Given series is
\[{{\left( x+\dfrac{1}{x} \right)}^{2}}+{{\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)}^{2}}+{{\left( x+\dfrac{1}{{{x}^{3}}} \right)}^{2}}...\]
Then, consider the given series as
\[A=\left( {{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \right)+\left( \dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \right)+2n\text{ }...(1)\]
So, the sub-series formed in the main series are:
\[{{I}_{1}}={{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms}\]
\[{{I}_{2}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms}\]
Then, their sums are calculated as follows:
\[\begin{align}
& {{I}_{1}}={{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \\
& a={{x}^{2}};r={{x}^{2}}; \\
& {{I}_{1}}=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}\text{ }...(2) \\
\end{align}\]
And
\[\begin{align}
& {{I}_{2}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \\
& a=\dfrac{1}{{{x}^{2}}};r=\dfrac{1}{{{x}^{2}}} \\
& {{I}_{2}}=\dfrac{\dfrac{1}{{{x}^{2}}}\left( 1-\dfrac{1}{{{x}^{2n}}} \right)}{1-\dfrac{1}{{{x}^{2}}}}\text{ }...(3) \\
\end{align}\]
Then, on substituting (2) and (3) in (1), we get
\[\begin{align}
& A=\left( {{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \right)+\left( \dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \right)+2n \\
& \text{ }=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}+\dfrac{\dfrac{1}{{{x}^{2}}}\left( 1-\dfrac{1}{{{x}^{2n}}} \right)}{1-\dfrac{1}{{{x}^{2}}}}+2n \\
& \text{ }=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}+\dfrac{{{x}^{2n}}-1}{({{x}^{2}}-1){{x}^{2n}}}+2n \\
& \text{ }=\dfrac{{{x}^{2n+2}}({{x}^{2n}}-1)+\left( {{x}^{2n}}-1 \right)}{{{x}^{2n}}({{x}^{2}}-1)}+2n \\
& \text{ }=\dfrac{({{x}^{2n}}-1)}{({{x}^{2}}-1)}\times \dfrac{\left( {{x}^{2n+2}}+1 \right)}{{{x}^{2n}}}+2n \\
\end{align}\]
Option ‘A’ is correct
Note: Here we may forget to split the series into two other series. If we forget to split, the calculation may become difficult. To avoid that, we need to split the series into two and find their sum separately. Then, adding those sums, we get the required expression on simplifying.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - is Common ratio.
Some of the important formulae:
$\begin{align}
& {{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& {{(x+\dfrac{1}{x})}^{2}}={{x}^{2}}+2+\dfrac{1}{{{x}^{2}}} \\
& {{(x-\dfrac{1}{x})}^{2}}={{x}^{2}}-2+\dfrac{1}{{{x}^{2}}} \\
\end{align}$
Complete step by step solution: Given series is
\[{{\left( x+\dfrac{1}{x} \right)}^{2}}+{{\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)}^{2}}+{{\left( x+\dfrac{1}{{{x}^{3}}} \right)}^{2}}...\]
Then, consider the given series as
\[A=\left( {{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \right)+\left( \dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \right)+2n\text{ }...(1)\]
So, the sub-series formed in the main series are:
\[{{I}_{1}}={{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms}\]
\[{{I}_{2}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms}\]
Then, their sums are calculated as follows:
\[\begin{align}
& {{I}_{1}}={{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \\
& a={{x}^{2}};r={{x}^{2}}; \\
& {{I}_{1}}=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}\text{ }...(2) \\
\end{align}\]
And
\[\begin{align}
& {{I}_{2}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \\
& a=\dfrac{1}{{{x}^{2}}};r=\dfrac{1}{{{x}^{2}}} \\
& {{I}_{2}}=\dfrac{\dfrac{1}{{{x}^{2}}}\left( 1-\dfrac{1}{{{x}^{2n}}} \right)}{1-\dfrac{1}{{{x}^{2}}}}\text{ }...(3) \\
\end{align}\]
Then, on substituting (2) and (3) in (1), we get
\[\begin{align}
& A=\left( {{x}^{2}}+{{x}^{4}}+{{x}^{6}}...n\text{ terms} \right)+\left( \dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}+\dfrac{1}{{{x}^{6}}}+...n\text{ terms} \right)+2n \\
& \text{ }=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}+\dfrac{\dfrac{1}{{{x}^{2}}}\left( 1-\dfrac{1}{{{x}^{2n}}} \right)}{1-\dfrac{1}{{{x}^{2}}}}+2n \\
& \text{ }=\dfrac{{{x}^{2}}({{x}^{2n}}-1)}{({{x}^{2}}-1)}+\dfrac{{{x}^{2n}}-1}{({{x}^{2}}-1){{x}^{2n}}}+2n \\
& \text{ }=\dfrac{{{x}^{2n+2}}({{x}^{2n}}-1)+\left( {{x}^{2n}}-1 \right)}{{{x}^{2n}}({{x}^{2}}-1)}+2n \\
& \text{ }=\dfrac{({{x}^{2n}}-1)}{({{x}^{2}}-1)}\times \dfrac{\left( {{x}^{2n+2}}+1 \right)}{{{x}^{2n}}}+2n \\
\end{align}\]
Option ‘A’ is correct
Note: Here we may forget to split the series into two other series. If we forget to split, the calculation may become difficult. To avoid that, we need to split the series into two and find their sum separately. Then, adding those sums, we get the required expression on simplifying.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

