
The value of the infinite product ${6^{\dfrac{1}{2}}} \times {6^{\dfrac{1}{4}}} \times {6^{\dfrac{1}{8}}} \times {6^{\dfrac{1}{{16}}}} \times ...$ is
A. $6$
B. $36$
C. $216$
D. $\infty $
Answer
218.7k+ views
Hint: We have to find an infinite product in this equation given as ${6^{\dfrac{1}{2}}} \times {6^{\dfrac{1}{4}}} \times {6^{\dfrac{1}{8}}} \times {6^{\dfrac{1}{{16}}}} \times ...$ , we see that all the terms are in exponential form and the base of each term is the same, that is, $6$ . We know that expressions with the same bases can be multiplied using the product rule of exponents. The exponents must be added while keeping the base constant in order to multiply two expressions with the same base, according to this rule. Exponents with the same base must be added when applying this rule. Simplify the given equation using this rule and thus find the infinite product.
Formula used::
Product of the exponents having same base is given as ${a^m} \times {a^n} = {a^{m + n}}$
Sum of an infinte GP is given as $\dfrac{a}{{1 - r}}$
Complete step by step answer:
We have to find the infinite product ${6^{\dfrac{1}{2}}} \times {6^{\dfrac{1}{4}}} \times {6^{\dfrac{1}{8}}} \times {6^{\dfrac{1}{{16}}}} \times ...$
We know that ${a^m} \times {a^n} = {a^{m + n}}$ , so we get:
${6^{\dfrac{1}{2}}} \times {6^{\dfrac{1}{4}}} \times {6^{\dfrac{1}{8}}} \times {6^{\dfrac{1}{{16}}}} \times ... = {6^{(\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + ...)}}$ …(1)
To find the value of the infinite product, we have to first find the value of $\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + ...$
We see that the first term of the above series is $\dfrac{1}{2}$ and each term is $\dfrac{1}{2}$ times its previous term, so it is an infinite geometric sequence with first term, $a = \dfrac{1}{2}$ and common difference $r = \dfrac{1}{2}$ .
We know that the sum of an infinite geometric sequence is given as $\dfrac{a}{{1 - r}}$ , so the sum of the above geometric sequence is
$
\dfrac{{\dfrac{1}{2}}}{{1 - \dfrac{1}{2}}} = \dfrac{{\dfrac{1}{2}}}{{\dfrac{{2 - 1}}{2}}} \\
= \dfrac{{\dfrac{1}{2}}}{{\dfrac{1}{2}}} \\
= 1 \\
$
That is, $\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + ... = 1$
Now, we put this value in (1):
$
{6^{\dfrac{1}{2}}} \times {6^{\dfrac{1}{4}}} \times {6^{\dfrac{1}{8}}} \times {6^{\dfrac{1}{{16}}}} \times ... = {6^{(1)}} \\
\Rightarrow {6^{\dfrac{1}{2}}} \times {6^{\dfrac{1}{4}}} \times {6^{\dfrac{1}{8}}} \times {6^{\dfrac{1}{{16}}}} \times ... = 6 \\
$
Thus the correct option is option A.
Note:
The sum of a geometric sequence is usually found using the formula ${S_n} = \dfrac{{a({r^n} - 1)}}{{r - 1}}$ , but this formula is for a geometric sequence that has a finite number of terms $n$ . So, we had to apply the formula for the sum of an infinite geometric series in this solution as the number of terms is infinite.
Formula used::
Product of the exponents having same base is given as ${a^m} \times {a^n} = {a^{m + n}}$
Sum of an infinte GP is given as $\dfrac{a}{{1 - r}}$
Complete step by step answer:
We have to find the infinite product ${6^{\dfrac{1}{2}}} \times {6^{\dfrac{1}{4}}} \times {6^{\dfrac{1}{8}}} \times {6^{\dfrac{1}{{16}}}} \times ...$
We know that ${a^m} \times {a^n} = {a^{m + n}}$ , so we get:
${6^{\dfrac{1}{2}}} \times {6^{\dfrac{1}{4}}} \times {6^{\dfrac{1}{8}}} \times {6^{\dfrac{1}{{16}}}} \times ... = {6^{(\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + ...)}}$ …(1)
To find the value of the infinite product, we have to first find the value of $\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + ...$
We see that the first term of the above series is $\dfrac{1}{2}$ and each term is $\dfrac{1}{2}$ times its previous term, so it is an infinite geometric sequence with first term, $a = \dfrac{1}{2}$ and common difference $r = \dfrac{1}{2}$ .
We know that the sum of an infinite geometric sequence is given as $\dfrac{a}{{1 - r}}$ , so the sum of the above geometric sequence is
$
\dfrac{{\dfrac{1}{2}}}{{1 - \dfrac{1}{2}}} = \dfrac{{\dfrac{1}{2}}}{{\dfrac{{2 - 1}}{2}}} \\
= \dfrac{{\dfrac{1}{2}}}{{\dfrac{1}{2}}} \\
= 1 \\
$
That is, $\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + ... = 1$
Now, we put this value in (1):
$
{6^{\dfrac{1}{2}}} \times {6^{\dfrac{1}{4}}} \times {6^{\dfrac{1}{8}}} \times {6^{\dfrac{1}{{16}}}} \times ... = {6^{(1)}} \\
\Rightarrow {6^{\dfrac{1}{2}}} \times {6^{\dfrac{1}{4}}} \times {6^{\dfrac{1}{8}}} \times {6^{\dfrac{1}{{16}}}} \times ... = 6 \\
$
Thus the correct option is option A.
Note:
The sum of a geometric sequence is usually found using the formula ${S_n} = \dfrac{{a({r^n} - 1)}}{{r - 1}}$ , but this formula is for a geometric sequence that has a finite number of terms $n$ . So, we had to apply the formula for the sum of an infinite geometric series in this solution as the number of terms is infinite.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

