
What will be the value of the given trigonometric expression?
$\dfrac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }}$
Answer
136.2k+ views
Hint: Rearrange the numerator and denominator terms in such a way that the sum of angles comes equal in magnitude, that is $9\theta ,3\theta $ terms should be together and $5\theta ,7\theta $ should be together. Then apply the trigonometric identity that $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and$\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$.
Complete step-by-step answer:
Given trigonometric equation is
$\dfrac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }}$
Rearrange its terms we have,
$ \Rightarrow \dfrac{{\sin 9\theta + \sin 3\theta + \sin 7\theta + \sin 5\theta }}{{\cos 9\theta + \cos 3\theta + \cos 7\theta + \cos 5\theta }}$
Now as we know $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and $\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ so use this property in above equation we have,
$ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{9\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{9\theta - 3\theta }}{2}} \right) + 2\sin \left( {\dfrac{{7\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{7\theta - 5\theta }}{2}} \right)}}{{2\cos \left( {\dfrac{{9\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{9\theta - 3\theta }}{2}} \right) + 2\cos \left( {\dfrac{{7\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{7\theta - 5\theta }}{2}} \right)}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{2\sin \left( {6\theta } \right)\cos \left( {3\theta } \right) + 2\sin \left( {6\theta } \right)\cos \left( \theta \right)}}{{2\cos \left( {6\theta } \right)\cos \left( {3\theta } \right) + 2\cos \left( {6\theta } \right)\cos \left( \theta \right)}}$
$ \Rightarrow \dfrac{{2\sin \left( {6\theta } \right)\left( {\cos \left( {3\theta } \right) + \cos \left( \theta \right)} \right)}}{{2\cos \left( {6\theta } \right)\left( {\cos \left( {3\theta } \right) + \cos \left( \theta \right)} \right)}}$
Now cancel the common terms we have,
$ \Rightarrow \dfrac{{\sin 6\theta }}{{\cos 6\theta }} = \tan 6\theta $
So this is the required answer.
Hence option (C) is correct.
Note: The trick behind taking $(9\theta ,3\theta ){\text{ and }}\left( {7\theta ,5\theta } \right)$ terms together was to form same terms in both numerator and denominator so that they could be cancelled. It is advisable to remember trigonometric identities as it helps to save a lot of time and proves very useful while dealing with trigonometric problems.
Complete step-by-step answer:
Given trigonometric equation is
$\dfrac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }}$
Rearrange its terms we have,
$ \Rightarrow \dfrac{{\sin 9\theta + \sin 3\theta + \sin 7\theta + \sin 5\theta }}{{\cos 9\theta + \cos 3\theta + \cos 7\theta + \cos 5\theta }}$
Now as we know $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and $\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ so use this property in above equation we have,
$ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{9\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{9\theta - 3\theta }}{2}} \right) + 2\sin \left( {\dfrac{{7\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{7\theta - 5\theta }}{2}} \right)}}{{2\cos \left( {\dfrac{{9\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{9\theta - 3\theta }}{2}} \right) + 2\cos \left( {\dfrac{{7\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{7\theta - 5\theta }}{2}} \right)}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{2\sin \left( {6\theta } \right)\cos \left( {3\theta } \right) + 2\sin \left( {6\theta } \right)\cos \left( \theta \right)}}{{2\cos \left( {6\theta } \right)\cos \left( {3\theta } \right) + 2\cos \left( {6\theta } \right)\cos \left( \theta \right)}}$
$ \Rightarrow \dfrac{{2\sin \left( {6\theta } \right)\left( {\cos \left( {3\theta } \right) + \cos \left( \theta \right)} \right)}}{{2\cos \left( {6\theta } \right)\left( {\cos \left( {3\theta } \right) + \cos \left( \theta \right)} \right)}}$
Now cancel the common terms we have,
$ \Rightarrow \dfrac{{\sin 6\theta }}{{\cos 6\theta }} = \tan 6\theta $
So this is the required answer.
Hence option (C) is correct.
Note: The trick behind taking $(9\theta ,3\theta ){\text{ and }}\left( {7\theta ,5\theta } \right)$ terms together was to form same terms in both numerator and denominator so that they could be cancelled. It is advisable to remember trigonometric identities as it helps to save a lot of time and proves very useful while dealing with trigonometric problems.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Collision - Important Concepts and Tips for JEE

Elastic Collisions in One Dimension - JEE Important Topic

Displacement-Time Graph and Velocity-Time Graph for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Functional Equations - Detailed Explanation with Methods for JEE

Other Pages
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 13 Statistics

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 14 Probability

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
