
What will be the value of the given trigonometric expression?
$\dfrac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }}$
Answer
233.1k+ views
Hint: Rearrange the numerator and denominator terms in such a way that the sum of angles comes equal in magnitude, that is $9\theta ,3\theta $ terms should be together and $5\theta ,7\theta $ should be together. Then apply the trigonometric identity that $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and$\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$.
Complete step-by-step answer:
Given trigonometric equation is
$\dfrac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }}$
Rearrange its terms we have,
$ \Rightarrow \dfrac{{\sin 9\theta + \sin 3\theta + \sin 7\theta + \sin 5\theta }}{{\cos 9\theta + \cos 3\theta + \cos 7\theta + \cos 5\theta }}$
Now as we know $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and $\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ so use this property in above equation we have,
$ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{9\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{9\theta - 3\theta }}{2}} \right) + 2\sin \left( {\dfrac{{7\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{7\theta - 5\theta }}{2}} \right)}}{{2\cos \left( {\dfrac{{9\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{9\theta - 3\theta }}{2}} \right) + 2\cos \left( {\dfrac{{7\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{7\theta - 5\theta }}{2}} \right)}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{2\sin \left( {6\theta } \right)\cos \left( {3\theta } \right) + 2\sin \left( {6\theta } \right)\cos \left( \theta \right)}}{{2\cos \left( {6\theta } \right)\cos \left( {3\theta } \right) + 2\cos \left( {6\theta } \right)\cos \left( \theta \right)}}$
$ \Rightarrow \dfrac{{2\sin \left( {6\theta } \right)\left( {\cos \left( {3\theta } \right) + \cos \left( \theta \right)} \right)}}{{2\cos \left( {6\theta } \right)\left( {\cos \left( {3\theta } \right) + \cos \left( \theta \right)} \right)}}$
Now cancel the common terms we have,
$ \Rightarrow \dfrac{{\sin 6\theta }}{{\cos 6\theta }} = \tan 6\theta $
So this is the required answer.
Hence option (C) is correct.
Note: The trick behind taking $(9\theta ,3\theta ){\text{ and }}\left( {7\theta ,5\theta } \right)$ terms together was to form same terms in both numerator and denominator so that they could be cancelled. It is advisable to remember trigonometric identities as it helps to save a lot of time and proves very useful while dealing with trigonometric problems.
Complete step-by-step answer:
Given trigonometric equation is
$\dfrac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }}$
Rearrange its terms we have,
$ \Rightarrow \dfrac{{\sin 9\theta + \sin 3\theta + \sin 7\theta + \sin 5\theta }}{{\cos 9\theta + \cos 3\theta + \cos 7\theta + \cos 5\theta }}$
Now as we know $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and $\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ so use this property in above equation we have,
$ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{9\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{9\theta - 3\theta }}{2}} \right) + 2\sin \left( {\dfrac{{7\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{7\theta - 5\theta }}{2}} \right)}}{{2\cos \left( {\dfrac{{9\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{9\theta - 3\theta }}{2}} \right) + 2\cos \left( {\dfrac{{7\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{7\theta - 5\theta }}{2}} \right)}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{2\sin \left( {6\theta } \right)\cos \left( {3\theta } \right) + 2\sin \left( {6\theta } \right)\cos \left( \theta \right)}}{{2\cos \left( {6\theta } \right)\cos \left( {3\theta } \right) + 2\cos \left( {6\theta } \right)\cos \left( \theta \right)}}$
$ \Rightarrow \dfrac{{2\sin \left( {6\theta } \right)\left( {\cos \left( {3\theta } \right) + \cos \left( \theta \right)} \right)}}{{2\cos \left( {6\theta } \right)\left( {\cos \left( {3\theta } \right) + \cos \left( \theta \right)} \right)}}$
Now cancel the common terms we have,
$ \Rightarrow \dfrac{{\sin 6\theta }}{{\cos 6\theta }} = \tan 6\theta $
So this is the required answer.
Hence option (C) is correct.
Note: The trick behind taking $(9\theta ,3\theta ){\text{ and }}\left( {7\theta ,5\theta } \right)$ terms together was to form same terms in both numerator and denominator so that they could be cancelled. It is advisable to remember trigonometric identities as it helps to save a lot of time and proves very useful while dealing with trigonometric problems.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

