
The value of $\tan \left[ {\dfrac{\pi }{4} + \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] + \tan \left[ {\dfrac{\pi }{4} - \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right]$ is equal to
A. $\dfrac{{2a}}{b}$
B. $\dfrac{{2b}}{a}$
C. $\dfrac{a}{b}$
D. $\dfrac{b}{a}$
Answer
217.5k+ views
Hint: In the given question, we need to find the value of the given function. For that, we apply the trigonometric formulas in the given question and then simplify it to get the desired result.
Formula Used:
We have been using the following formulas:
1. $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$
2. $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
3. $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
4. ${\sec ^2}A = 1 + {\tan ^2}A$
5. The value of $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
6. ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
7. ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Complete step by step solution:
Given function is $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$
Now we know that $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$ and $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$.So, by applying the formula in given function, we get
$\dfrac{{\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we know that $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
So, our function becomes:
$\dfrac{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we take L.C.M, we get
$\dfrac{{\left[ {\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\,\,\,\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right] + \left[ {\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right]}}{{\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$\dfrac{{{{\left[ {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}\, + \,{{\left[ {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}\left( {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right)$
Now we know that ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
Therefore, our function becomes
$\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2 + 2{{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2\left( {1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
$
Now we know that $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
Now by applying this formula in above function, we get
$\dfrac{2}{{\cos 2\,\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
Now we know that $\cos \left( {{{\cos }^{ - 1}}x} \right) = x$
Therefore, our function becomes:
$\dfrac{2}{{\dfrac{a}{b}}}$
Further simplification, we get
$\dfrac{{2b}}{a}$
Therefore, the value of $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$ is equal to $\dfrac{{2b}}{a}$
Option ‘B’ is correct
Note: To solve this type of question, we need to remember all the trigonometric formulas like ${\sec ^2}A = 1 + {\tan ^2}A$ and the algebraic identity like $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and students should be very careful while applying the formula and simplification.
Formula Used:
We have been using the following formulas:
1. $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$
2. $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
3. $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
4. ${\sec ^2}A = 1 + {\tan ^2}A$
5. The value of $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
6. ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
7. ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Complete step by step solution:
Given function is $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$
Now we know that $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$ and $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$.So, by applying the formula in given function, we get
$\dfrac{{\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we know that $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
So, our function becomes:
$\dfrac{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we take L.C.M, we get
$\dfrac{{\left[ {\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\,\,\,\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right] + \left[ {\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right]}}{{\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$\dfrac{{{{\left[ {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}\, + \,{{\left[ {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}\left( {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right)$
Now we know that ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
Therefore, our function becomes
$\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2 + 2{{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2\left( {1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
$
Now we know that $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
Now by applying this formula in above function, we get
$\dfrac{2}{{\cos 2\,\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
Now we know that $\cos \left( {{{\cos }^{ - 1}}x} \right) = x$
Therefore, our function becomes:
$\dfrac{2}{{\dfrac{a}{b}}}$
Further simplification, we get
$\dfrac{{2b}}{a}$
Therefore, the value of $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$ is equal to $\dfrac{{2b}}{a}$
Option ‘B’ is correct
Note: To solve this type of question, we need to remember all the trigonometric formulas like ${\sec ^2}A = 1 + {\tan ^2}A$ and the algebraic identity like $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and students should be very careful while applying the formula and simplification.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

