
The value of $\tan \left[ {\dfrac{\pi }{4} + \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] + \tan \left[ {\dfrac{\pi }{4} - \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right]$ is equal to
A. $\dfrac{{2a}}{b}$
B. $\dfrac{{2b}}{a}$
C. $\dfrac{a}{b}$
D. $\dfrac{b}{a}$
Answer
232.8k+ views
Hint: In the given question, we need to find the value of the given function. For that, we apply the trigonometric formulas in the given question and then simplify it to get the desired result.
Formula Used:
We have been using the following formulas:
1. $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$
2. $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
3. $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
4. ${\sec ^2}A = 1 + {\tan ^2}A$
5. The value of $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
6. ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
7. ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Complete step by step solution:
Given function is $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$
Now we know that $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$ and $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$.So, by applying the formula in given function, we get
$\dfrac{{\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we know that $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
So, our function becomes:
$\dfrac{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we take L.C.M, we get
$\dfrac{{\left[ {\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\,\,\,\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right] + \left[ {\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right]}}{{\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$\dfrac{{{{\left[ {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}\, + \,{{\left[ {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}\left( {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right)$
Now we know that ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
Therefore, our function becomes
$\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2 + 2{{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2\left( {1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
$
Now we know that $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
Now by applying this formula in above function, we get
$\dfrac{2}{{\cos 2\,\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
Now we know that $\cos \left( {{{\cos }^{ - 1}}x} \right) = x$
Therefore, our function becomes:
$\dfrac{2}{{\dfrac{a}{b}}}$
Further simplification, we get
$\dfrac{{2b}}{a}$
Therefore, the value of $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$ is equal to $\dfrac{{2b}}{a}$
Option ‘B’ is correct
Note: To solve this type of question, we need to remember all the trigonometric formulas like ${\sec ^2}A = 1 + {\tan ^2}A$ and the algebraic identity like $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and students should be very careful while applying the formula and simplification.
Formula Used:
We have been using the following formulas:
1. $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$
2. $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
3. $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
4. ${\sec ^2}A = 1 + {\tan ^2}A$
5. The value of $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
6. ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
7. ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Complete step by step solution:
Given function is $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$
Now we know that $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$ and $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$.So, by applying the formula in given function, we get
$\dfrac{{\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we know that $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
So, our function becomes:
$\dfrac{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we take L.C.M, we get
$\dfrac{{\left[ {\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\,\,\,\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right] + \left[ {\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right]}}{{\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$\dfrac{{{{\left[ {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}\, + \,{{\left[ {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}\left( {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right)$
Now we know that ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
Therefore, our function becomes
$\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2 + 2{{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2\left( {1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
$
Now we know that $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
Now by applying this formula in above function, we get
$\dfrac{2}{{\cos 2\,\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
Now we know that $\cos \left( {{{\cos }^{ - 1}}x} \right) = x$
Therefore, our function becomes:
$\dfrac{2}{{\dfrac{a}{b}}}$
Further simplification, we get
$\dfrac{{2b}}{a}$
Therefore, the value of $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$ is equal to $\dfrac{{2b}}{a}$
Option ‘B’ is correct
Note: To solve this type of question, we need to remember all the trigonometric formulas like ${\sec ^2}A = 1 + {\tan ^2}A$ and the algebraic identity like $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and students should be very careful while applying the formula and simplification.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

