
The value of $\tan \left[ {\dfrac{\pi }{4} + \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] + \tan \left[ {\dfrac{\pi }{4} - \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right]$ is equal to
A. $\dfrac{{2a}}{b}$
B. $\dfrac{{2b}}{a}$
C. $\dfrac{a}{b}$
D. $\dfrac{b}{a}$
Answer
162.9k+ views
Hint: In the given question, we need to find the value of the given function. For that, we apply the trigonometric formulas in the given question and then simplify it to get the desired result.
Formula Used:
We have been using the following formulas:
1. $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$
2. $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
3. $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
4. ${\sec ^2}A = 1 + {\tan ^2}A$
5. The value of $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
6. ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
7. ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Complete step by step solution:
Given function is $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$
Now we know that $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$ and $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$.So, by applying the formula in given function, we get
$\dfrac{{\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we know that $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
So, our function becomes:
$\dfrac{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we take L.C.M, we get
$\dfrac{{\left[ {\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\,\,\,\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right] + \left[ {\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right]}}{{\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$\dfrac{{{{\left[ {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}\, + \,{{\left[ {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}\left( {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right)$
Now we know that ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
Therefore, our function becomes
$\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2 + 2{{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2\left( {1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
$
Now we know that $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
Now by applying this formula in above function, we get
$\dfrac{2}{{\cos 2\,\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
Now we know that $\cos \left( {{{\cos }^{ - 1}}x} \right) = x$
Therefore, our function becomes:
$\dfrac{2}{{\dfrac{a}{b}}}$
Further simplification, we get
$\dfrac{{2b}}{a}$
Therefore, the value of $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$ is equal to $\dfrac{{2b}}{a}$
Option ‘B’ is correct
Note: To solve this type of question, we need to remember all the trigonometric formulas like ${\sec ^2}A = 1 + {\tan ^2}A$ and the algebraic identity like $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and students should be very careful while applying the formula and simplification.
Formula Used:
We have been using the following formulas:
1. $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$
2. $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
3. $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
4. ${\sec ^2}A = 1 + {\tan ^2}A$
5. The value of $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
6. ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
7. ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Complete step by step solution:
Given function is $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$
Now we know that $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}}$ and $\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$.So, by applying the formula in given function, we get
$\dfrac{{\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \dfrac{\pi }{4}\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we know that $\tan \left( {\dfrac{\pi }{4}} \right) = 1$
So, our function becomes:
$\dfrac{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}} + \dfrac{{1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}{{1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)}}$
Now we take L.C.M, we get
$\dfrac{{\left[ {\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\,\,\,\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right] + \left[ {\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)} \right]}}{{\left( {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)\left( {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$\dfrac{{{{\left[ {1 + \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}\, + \,{{\left[ {1 - \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right]}^2}}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}\left( {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right)$
Now we know that ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
Therefore, our function becomes
$\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
By simplifying, we get
$
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) - 2\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right) + 1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2 + 2{{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
\dfrac{{2\left( {1 + {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}} \\
$
Now we know that $\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
Now by applying this formula in above function, we get
$\dfrac{2}{{\cos 2\,\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right)}}$
Now we know that $\cos \left( {{{\cos }^{ - 1}}x} \right) = x$
Therefore, our function becomes:
$\dfrac{2}{{\dfrac{a}{b}}}$
Further simplification, we get
$\dfrac{{2b}}{a}$
Therefore, the value of $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$ is equal to $\dfrac{{2b}}{a}$
Option ‘B’ is correct
Note: To solve this type of question, we need to remember all the trigonometric formulas like ${\sec ^2}A = 1 + {\tan ^2}A$ and the algebraic identity like $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and students should be very careful while applying the formula and simplification.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
