
The value of \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \] is
A. \[1\]
B. \[0\]
C. \[ - 1\]
D. None of these
Answer
161.1k+ views
Hint: We are given an equation \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \]
Now we write it in terms of exponential, then equate it to some variable and find the product, then we solve the series using G.P. In simplification, we will get our result.
Formula used:
We have been using the following formula:
1. \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
2. \[{S_n} = \dfrac{a}{{1 - r}}\]
3. \[\cos \pi = - 1\]
4. \[\sin \pi = 0\]
5. \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
Complete step-by-step solution:
We are given that \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty - - - (1)\]
Now we rewrite the given equation as:
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^2}}}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^3}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^3}}}} \right)...\infty - - - \left( 2 \right) \\ \]
Now we know the exponential formula \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
Therefore, we can write equation (2) as:
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty \]
Now, we will simplify the exponent powers using \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
\[{e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}}\]
Now we know that a given series is an infinite G.P series because each succeeding term is produced by multiplying each preceding term by a fixed number in which the first term is \[{e^{i\,\,\dfrac{\pi }{2}}}\] and the common difference is \[{e^{i\,\,\dfrac{\pi }{2}}}\]
Now, we apply the formula of the sum of series which is \[{S_n} = \dfrac{a}{{1 - r}}\]
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{1 - \dfrac{1}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{{2 - 1}}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right)}} \\
\]
Further Solving,
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\pi }}\]
Further solving we get,
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = \,\cos \pi + i\sin \pi \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 + 0i \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 \\
\]
Therefore, the value of \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \] is \[ - 1\].
Hence, option (C) is correct answer
Note: Students become confused when solving equations and wonder which equation to enter. Converting equations having exponential values to equations including sine and cosine values can be problematic.
Now we write it in terms of exponential, then equate it to some variable and find the product, then we solve the series using G.P. In simplification, we will get our result.
Formula used:
We have been using the following formula:
1. \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
2. \[{S_n} = \dfrac{a}{{1 - r}}\]
3. \[\cos \pi = - 1\]
4. \[\sin \pi = 0\]
5. \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
Complete step-by-step solution:
We are given that \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty - - - (1)\]
Now we rewrite the given equation as:
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^2}}}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^3}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^3}}}} \right)...\infty - - - \left( 2 \right) \\ \]
Now we know the exponential formula \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
Therefore, we can write equation (2) as:
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty \]
Now, we will simplify the exponent powers using \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
\[{e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}}\]
Now we know that a given series is an infinite G.P series because each succeeding term is produced by multiplying each preceding term by a fixed number in which the first term is \[{e^{i\,\,\dfrac{\pi }{2}}}\] and the common difference is \[{e^{i\,\,\dfrac{\pi }{2}}}\]
Now, we apply the formula of the sum of series which is \[{S_n} = \dfrac{a}{{1 - r}}\]
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{1 - \dfrac{1}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{{2 - 1}}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right)}} \\
\]
Further Solving,
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\pi }}\]
Further solving we get,
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = \,\cos \pi + i\sin \pi \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 + 0i \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 \\
\]
Therefore, the value of \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \] is \[ - 1\].
Hence, option (C) is correct answer
Note: Students become confused when solving equations and wonder which equation to enter. Converting equations having exponential values to equations including sine and cosine values can be problematic.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
