
The value of \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \] is
A. \[1\]
B. \[0\]
C. \[ - 1\]
D. None of these
Answer
163.5k+ views
Hint: We are given an equation \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \]
Now we write it in terms of exponential, then equate it to some variable and find the product, then we solve the series using G.P. In simplification, we will get our result.
Formula used:
We have been using the following formula:
1. \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
2. \[{S_n} = \dfrac{a}{{1 - r}}\]
3. \[\cos \pi = - 1\]
4. \[\sin \pi = 0\]
5. \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
Complete step-by-step solution:
We are given that \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty - - - (1)\]
Now we rewrite the given equation as:
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^2}}}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^3}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^3}}}} \right)...\infty - - - \left( 2 \right) \\ \]
Now we know the exponential formula \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
Therefore, we can write equation (2) as:
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty \]
Now, we will simplify the exponent powers using \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
\[{e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}}\]
Now we know that a given series is an infinite G.P series because each succeeding term is produced by multiplying each preceding term by a fixed number in which the first term is \[{e^{i\,\,\dfrac{\pi }{2}}}\] and the common difference is \[{e^{i\,\,\dfrac{\pi }{2}}}\]
Now, we apply the formula of the sum of series which is \[{S_n} = \dfrac{a}{{1 - r}}\]
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{1 - \dfrac{1}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{{2 - 1}}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right)}} \\
\]
Further Solving,
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\pi }}\]
Further solving we get,
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = \,\cos \pi + i\sin \pi \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 + 0i \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 \\
\]
Therefore, the value of \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \] is \[ - 1\].
Hence, option (C) is correct answer
Note: Students become confused when solving equations and wonder which equation to enter. Converting equations having exponential values to equations including sine and cosine values can be problematic.
Now we write it in terms of exponential, then equate it to some variable and find the product, then we solve the series using G.P. In simplification, we will get our result.
Formula used:
We have been using the following formula:
1. \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
2. \[{S_n} = \dfrac{a}{{1 - r}}\]
3. \[\cos \pi = - 1\]
4. \[\sin \pi = 0\]
5. \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
Complete step-by-step solution:
We are given that \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty - - - (1)\]
Now we rewrite the given equation as:
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^2}}}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^3}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^3}}}} \right)...\infty - - - \left( 2 \right) \\ \]
Now we know the exponential formula \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
Therefore, we can write equation (2) as:
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty \]
Now, we will simplify the exponent powers using \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
\[{e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}}\]
Now we know that a given series is an infinite G.P series because each succeeding term is produced by multiplying each preceding term by a fixed number in which the first term is \[{e^{i\,\,\dfrac{\pi }{2}}}\] and the common difference is \[{e^{i\,\,\dfrac{\pi }{2}}}\]
Now, we apply the formula of the sum of series which is \[{S_n} = \dfrac{a}{{1 - r}}\]
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{1 - \dfrac{1}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{{2 - 1}}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right)}} \\
\]
Further Solving,
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\pi }}\]
Further solving we get,
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = \,\cos \pi + i\sin \pi \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 + 0i \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 \\
\]
Therefore, the value of \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \] is \[ - 1\].
Hence, option (C) is correct answer
Note: Students become confused when solving equations and wonder which equation to enter. Converting equations having exponential values to equations including sine and cosine values can be problematic.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
