
The value of $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ equals to
A . $\dfrac{\cos A+\sin A}{\cos A-\sin A}$
B . $\dfrac{\cos A-\sin A}{\cos A-\sin A}$
C . $\dfrac{\cos A+\sin A}{\cos A+\sin A}$
D . None of these
Answer
232.8k+ views
Hint: In this question, we have to find the value of $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ by simplifying it. First we use the complimentary angles of trigonometric ratios to change the functions. After conversion, cos value changes to sin value and the question will be in sin form. Then we apply the formula of $\sin A+\sin B$for further solving. By using the formula and simplifying the equation, we are able to get the desired value.
Formula Used:
To solve this question, we use the identity which is described below:-
$\sin ({{90}^{\circ }}-A)=\cos A$
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Complete Step- by- step Solution:
Given that $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ …………………………. (1)
We know the complementary angles of trigonometric ratios which is given by
$\sin ({{90}^{\circ }}-A)=\cos A$
Then equation (1) becomes
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$= $\dfrac{\sin (B+A)+\sin ({{90}^{\circ }}-(B-A))}{\sin (B-A)+\sin ({{90}^{\circ }}-(B+A))}$
Simplifying it, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\sin (B+A)+\sin ({{90}^{\circ }}-B+A)}{\sin (B-A)+\sin ({{90}^{\circ }}-B-A)}$…………. (2)
We know the trigonometric identities
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Equating the equation (2) with the above formula, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{2\sin \left( {{45}^{\circ }}+A \right)\cos \left( B-{{45}^{\circ }} \right)}{2\sin ({{45}^{\circ }}-A)\cos (B-{{45}^{\circ }})}$
Further solving the above equation, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\sin \left( {{45}^{\circ }}+A \right)}{\sin ({{45}^{\circ }}-A)}$
We know $\sin (a+b)=\sin a\cos b+\cos a\sin b$
And $\sin (a-b)=\sin a\cos b-\cos a\sin b$
Then $\sin ({{45}^{\circ }}+A)=\sin {{45}^{\circ }}\cos A+\cos {{45}^{\circ }}\sin A$
And $\sin ({{45}^{\circ }}-A)=\sin {{45}^{\circ }}\cos A-\cos {{45}^{\circ }}\sin A$
Hence $\dfrac{\sin ({{45}^{\circ }}+A)=\sin {{45}^{\circ }}\cos A+\cos {{45}^{\circ }}\sin A}{\sin ({{45}^{\circ }}-A)=\sin {{45}^{\circ }}\cos A-\cos {{45}^{\circ }}\sin A}$
Thus $\dfrac{\sin ({{45}^{\circ }}+A)}{\sin ({{45}^{\circ }}-A)}=\dfrac{\dfrac{\sqrt{2}}{2}\cos A+\dfrac{\sqrt{2}}{2}\sin A}{\dfrac{\sqrt{2}}{2}\cos A-\dfrac{\sqrt{2}}{2}\sin A}$
$\dfrac{\sin ({{45}^{\circ }}+A)}{\sin ({{45}^{\circ }}-A)}=\dfrac{\dfrac{\sqrt{2}}{2}(\cos A+\sin A)}{\dfrac{\sqrt{2}}{2}(\cos A-\sin A)}$
Then $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\cos A+\sin A}{\cos A-\sin A}$
Hence, the option A is correct.
Note: Whenever you get this type of question, important is to know about the complementary angles of trigonometric ratios and how to write the equation in the form of complementary angles. We know any two angle with their sum of ${{90}^{\circ }}$are called complementary. So the complement of any angle is that value which is obtained by subtracting it from ${{90}^{\circ }}$. According to trigonometric complimentary ratio theorem, trigonometric function of complementary angle is defined as another trigonometric function of the original angle. Then
$\sin ({{90}^{\circ }}-A)=\cos A$
$\cos ({{90}^{\circ }}-A)=\sin A$
$tan({{90}^{\circ }}-A)=\cot A$
$\cot ({{90}^{\circ }}-A)=\tan A$
$\sec ({{90}^{\circ }}-A)=\cos ecA$
$\cos ec({{90}^{\circ }}-A)=\sec A$
These are some trigonometric functions which are used to solve the questions based on trigonometry.
Formula Used:
To solve this question, we use the identity which is described below:-
$\sin ({{90}^{\circ }}-A)=\cos A$
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Complete Step- by- step Solution:
Given that $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ …………………………. (1)
We know the complementary angles of trigonometric ratios which is given by
$\sin ({{90}^{\circ }}-A)=\cos A$
Then equation (1) becomes
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$= $\dfrac{\sin (B+A)+\sin ({{90}^{\circ }}-(B-A))}{\sin (B-A)+\sin ({{90}^{\circ }}-(B+A))}$
Simplifying it, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\sin (B+A)+\sin ({{90}^{\circ }}-B+A)}{\sin (B-A)+\sin ({{90}^{\circ }}-B-A)}$…………. (2)
We know the trigonometric identities
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Equating the equation (2) with the above formula, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{2\sin \left( {{45}^{\circ }}+A \right)\cos \left( B-{{45}^{\circ }} \right)}{2\sin ({{45}^{\circ }}-A)\cos (B-{{45}^{\circ }})}$
Further solving the above equation, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\sin \left( {{45}^{\circ }}+A \right)}{\sin ({{45}^{\circ }}-A)}$
We know $\sin (a+b)=\sin a\cos b+\cos a\sin b$
And $\sin (a-b)=\sin a\cos b-\cos a\sin b$
Then $\sin ({{45}^{\circ }}+A)=\sin {{45}^{\circ }}\cos A+\cos {{45}^{\circ }}\sin A$
And $\sin ({{45}^{\circ }}-A)=\sin {{45}^{\circ }}\cos A-\cos {{45}^{\circ }}\sin A$
Hence $\dfrac{\sin ({{45}^{\circ }}+A)=\sin {{45}^{\circ }}\cos A+\cos {{45}^{\circ }}\sin A}{\sin ({{45}^{\circ }}-A)=\sin {{45}^{\circ }}\cos A-\cos {{45}^{\circ }}\sin A}$
Thus $\dfrac{\sin ({{45}^{\circ }}+A)}{\sin ({{45}^{\circ }}-A)}=\dfrac{\dfrac{\sqrt{2}}{2}\cos A+\dfrac{\sqrt{2}}{2}\sin A}{\dfrac{\sqrt{2}}{2}\cos A-\dfrac{\sqrt{2}}{2}\sin A}$
$\dfrac{\sin ({{45}^{\circ }}+A)}{\sin ({{45}^{\circ }}-A)}=\dfrac{\dfrac{\sqrt{2}}{2}(\cos A+\sin A)}{\dfrac{\sqrt{2}}{2}(\cos A-\sin A)}$
Then $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\cos A+\sin A}{\cos A-\sin A}$
Hence, the option A is correct.
Note: Whenever you get this type of question, important is to know about the complementary angles of trigonometric ratios and how to write the equation in the form of complementary angles. We know any two angle with their sum of ${{90}^{\circ }}$are called complementary. So the complement of any angle is that value which is obtained by subtracting it from ${{90}^{\circ }}$. According to trigonometric complimentary ratio theorem, trigonometric function of complementary angle is defined as another trigonometric function of the original angle. Then
$\sin ({{90}^{\circ }}-A)=\cos A$
$\cos ({{90}^{\circ }}-A)=\sin A$
$tan({{90}^{\circ }}-A)=\cot A$
$\cot ({{90}^{\circ }}-A)=\tan A$
$\sec ({{90}^{\circ }}-A)=\cos ecA$
$\cos ec({{90}^{\circ }}-A)=\sec A$
These are some trigonometric functions which are used to solve the questions based on trigonometry.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

