
The value of $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ equals to
A . $\dfrac{\cos A+\sin A}{\cos A-\sin A}$
B . $\dfrac{\cos A-\sin A}{\cos A-\sin A}$
C . $\dfrac{\cos A+\sin A}{\cos A+\sin A}$
D . None of these
Answer
163.5k+ views
Hint: In this question, we have to find the value of $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ by simplifying it. First we use the complimentary angles of trigonometric ratios to change the functions. After conversion, cos value changes to sin value and the question will be in sin form. Then we apply the formula of $\sin A+\sin B$for further solving. By using the formula and simplifying the equation, we are able to get the desired value.
Formula Used:
To solve this question, we use the identity which is described below:-
$\sin ({{90}^{\circ }}-A)=\cos A$
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Complete Step- by- step Solution:
Given that $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ …………………………. (1)
We know the complementary angles of trigonometric ratios which is given by
$\sin ({{90}^{\circ }}-A)=\cos A$
Then equation (1) becomes
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$= $\dfrac{\sin (B+A)+\sin ({{90}^{\circ }}-(B-A))}{\sin (B-A)+\sin ({{90}^{\circ }}-(B+A))}$
Simplifying it, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\sin (B+A)+\sin ({{90}^{\circ }}-B+A)}{\sin (B-A)+\sin ({{90}^{\circ }}-B-A)}$…………. (2)
We know the trigonometric identities
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Equating the equation (2) with the above formula, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{2\sin \left( {{45}^{\circ }}+A \right)\cos \left( B-{{45}^{\circ }} \right)}{2\sin ({{45}^{\circ }}-A)\cos (B-{{45}^{\circ }})}$
Further solving the above equation, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\sin \left( {{45}^{\circ }}+A \right)}{\sin ({{45}^{\circ }}-A)}$
We know $\sin (a+b)=\sin a\cos b+\cos a\sin b$
And $\sin (a-b)=\sin a\cos b-\cos a\sin b$
Then $\sin ({{45}^{\circ }}+A)=\sin {{45}^{\circ }}\cos A+\cos {{45}^{\circ }}\sin A$
And $\sin ({{45}^{\circ }}-A)=\sin {{45}^{\circ }}\cos A-\cos {{45}^{\circ }}\sin A$
Hence $\dfrac{\sin ({{45}^{\circ }}+A)=\sin {{45}^{\circ }}\cos A+\cos {{45}^{\circ }}\sin A}{\sin ({{45}^{\circ }}-A)=\sin {{45}^{\circ }}\cos A-\cos {{45}^{\circ }}\sin A}$
Thus $\dfrac{\sin ({{45}^{\circ }}+A)}{\sin ({{45}^{\circ }}-A)}=\dfrac{\dfrac{\sqrt{2}}{2}\cos A+\dfrac{\sqrt{2}}{2}\sin A}{\dfrac{\sqrt{2}}{2}\cos A-\dfrac{\sqrt{2}}{2}\sin A}$
$\dfrac{\sin ({{45}^{\circ }}+A)}{\sin ({{45}^{\circ }}-A)}=\dfrac{\dfrac{\sqrt{2}}{2}(\cos A+\sin A)}{\dfrac{\sqrt{2}}{2}(\cos A-\sin A)}$
Then $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\cos A+\sin A}{\cos A-\sin A}$
Hence, the option A is correct.
Note: Whenever you get this type of question, important is to know about the complementary angles of trigonometric ratios and how to write the equation in the form of complementary angles. We know any two angle with their sum of ${{90}^{\circ }}$are called complementary. So the complement of any angle is that value which is obtained by subtracting it from ${{90}^{\circ }}$. According to trigonometric complimentary ratio theorem, trigonometric function of complementary angle is defined as another trigonometric function of the original angle. Then
$\sin ({{90}^{\circ }}-A)=\cos A$
$\cos ({{90}^{\circ }}-A)=\sin A$
$tan({{90}^{\circ }}-A)=\cot A$
$\cot ({{90}^{\circ }}-A)=\tan A$
$\sec ({{90}^{\circ }}-A)=\cos ecA$
$\cos ec({{90}^{\circ }}-A)=\sec A$
These are some trigonometric functions which are used to solve the questions based on trigonometry.
Formula Used:
To solve this question, we use the identity which is described below:-
$\sin ({{90}^{\circ }}-A)=\cos A$
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Complete Step- by- step Solution:
Given that $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ …………………………. (1)
We know the complementary angles of trigonometric ratios which is given by
$\sin ({{90}^{\circ }}-A)=\cos A$
Then equation (1) becomes
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$= $\dfrac{\sin (B+A)+\sin ({{90}^{\circ }}-(B-A))}{\sin (B-A)+\sin ({{90}^{\circ }}-(B+A))}$
Simplifying it, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\sin (B+A)+\sin ({{90}^{\circ }}-B+A)}{\sin (B-A)+\sin ({{90}^{\circ }}-B-A)}$…………. (2)
We know the trigonometric identities
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Equating the equation (2) with the above formula, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{2\sin \left( {{45}^{\circ }}+A \right)\cos \left( B-{{45}^{\circ }} \right)}{2\sin ({{45}^{\circ }}-A)\cos (B-{{45}^{\circ }})}$
Further solving the above equation, we get
$\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\sin \left( {{45}^{\circ }}+A \right)}{\sin ({{45}^{\circ }}-A)}$
We know $\sin (a+b)=\sin a\cos b+\cos a\sin b$
And $\sin (a-b)=\sin a\cos b-\cos a\sin b$
Then $\sin ({{45}^{\circ }}+A)=\sin {{45}^{\circ }}\cos A+\cos {{45}^{\circ }}\sin A$
And $\sin ({{45}^{\circ }}-A)=\sin {{45}^{\circ }}\cos A-\cos {{45}^{\circ }}\sin A$
Hence $\dfrac{\sin ({{45}^{\circ }}+A)=\sin {{45}^{\circ }}\cos A+\cos {{45}^{\circ }}\sin A}{\sin ({{45}^{\circ }}-A)=\sin {{45}^{\circ }}\cos A-\cos {{45}^{\circ }}\sin A}$
Thus $\dfrac{\sin ({{45}^{\circ }}+A)}{\sin ({{45}^{\circ }}-A)}=\dfrac{\dfrac{\sqrt{2}}{2}\cos A+\dfrac{\sqrt{2}}{2}\sin A}{\dfrac{\sqrt{2}}{2}\cos A-\dfrac{\sqrt{2}}{2}\sin A}$
$\dfrac{\sin ({{45}^{\circ }}+A)}{\sin ({{45}^{\circ }}-A)}=\dfrac{\dfrac{\sqrt{2}}{2}(\cos A+\sin A)}{\dfrac{\sqrt{2}}{2}(\cos A-\sin A)}$
Then $\dfrac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ = $\dfrac{\cos A+\sin A}{\cos A-\sin A}$
Hence, the option A is correct.
Note: Whenever you get this type of question, important is to know about the complementary angles of trigonometric ratios and how to write the equation in the form of complementary angles. We know any two angle with their sum of ${{90}^{\circ }}$are called complementary. So the complement of any angle is that value which is obtained by subtracting it from ${{90}^{\circ }}$. According to trigonometric complimentary ratio theorem, trigonometric function of complementary angle is defined as another trigonometric function of the original angle. Then
$\sin ({{90}^{\circ }}-A)=\cos A$
$\cos ({{90}^{\circ }}-A)=\sin A$
$tan({{90}^{\circ }}-A)=\cot A$
$\cot ({{90}^{\circ }}-A)=\tan A$
$\sec ({{90}^{\circ }}-A)=\cos ecA$
$\cos ec({{90}^{\circ }}-A)=\sec A$
These are some trigonometric functions which are used to solve the questions based on trigonometry.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
