
The total energy of an isolated system is conserved under which of the following?
(A) Only when the forces involved are conservative
(B) Only when friction can be neglected
(C) Only when non-conservative forces are involved
(D) Always
(E) Technically never
Answer
230.7k+ views
Hint: This question is related to the first law of thermodynamics. We can also understand this based on the definition of an isolated system. An isolated system is completely isolated from its surroundings and no transfer of energy or mass is possible between the system and surroundings.
Complete step-by-step answer:
The law of conservation of energy or the first law of thermodynamics states that the energy can neither be created nor be destroyed, but it can be transformed from one form to another. In other words, the total energy of an isolated system is always conserved. For example, when you are driving a car or a motorcycle, the chemical energy that was stored either in the fuel or in the battery is getting converted into mechanical energy. Similarly, when an explosion happens, the chemical energy of the fuel is converted into light energy and heat energy.
We have many such experiences to prove that the total energy of an isolated system is conserved over time, always.
So the correct answer is option D.
Note: An isolated system is a physical system which is completely isolated from its surroundings and such that there occurs no transfer of energy or mass. If you take a cup of tea and keep it open on the table, then after sometime you can find that the tea is cold. Here, if the cup is considered as your system, then the energy is conserved, because at the time of keeping the cup on the table and after some time, the heat energy in the cup is different. But, what we should keep in mind is that the tea cup placed over the table is not an isolated system. It can transfer energy and even mass from itself to its surroundings.
Complete step-by-step answer:
The law of conservation of energy or the first law of thermodynamics states that the energy can neither be created nor be destroyed, but it can be transformed from one form to another. In other words, the total energy of an isolated system is always conserved. For example, when you are driving a car or a motorcycle, the chemical energy that was stored either in the fuel or in the battery is getting converted into mechanical energy. Similarly, when an explosion happens, the chemical energy of the fuel is converted into light energy and heat energy.
We have many such experiences to prove that the total energy of an isolated system is conserved over time, always.
So the correct answer is option D.
Note: An isolated system is a physical system which is completely isolated from its surroundings and such that there occurs no transfer of energy or mass. If you take a cup of tea and keep it open on the table, then after sometime you can find that the tea is cold. Here, if the cup is considered as your system, then the energy is conserved, because at the time of keeping the cup on the table and after some time, the heat energy in the cup is different. But, what we should keep in mind is that the tea cup placed over the table is not an isolated system. It can transfer energy and even mass from itself to its surroundings.
Recently Updated Pages
Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

