
The sum $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $ equal to?
A. $\dfrac{\sin \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\sin \dfrac{\theta }{2}}$
B. $\dfrac{\cos \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\sin \dfrac{\theta }{2}}$
C. $\dfrac{\sin \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\cos \dfrac{\theta }{2}}$
D. $\dfrac{\cos \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\cos \dfrac{\theta }{2}}$
Answer
232.8k+ views
Hint: In this question, we have to find the sum of $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $. To solve this question, we consider only first term of the series and multiply it by $2\sin \dfrac{\theta }{2}$. As the equation becomes in the form of $2\sin C\sin D$, so we use the formula of $2\sin C\sin D$to expand the equation. Then we use the second term of the series and do the same process till the last term of the series. After that, we add all the equations and adding and subtracting the terms and more simplifying it, we are able to get the sum of the series.
Formula Used:
We will use the formula
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Complete Step- by- step Solution:
Given that sum $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $………………………………. (1)
We know that
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Let us consider first term of sequence (1)
i.e. $\sin \theta $, multiply it by $2\sin \dfrac{\theta }{2}$
we get $2\sin \theta \sin \dfrac{\theta }{2}=\cos (\theta -\dfrac{\theta }{2})-\cos (\theta +\dfrac{\theta }{2})$
that is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}$………………………………………………………...(2)
Same process we do with the second term i.e. $\sin 2\theta $
Multiply $\sin 2\theta $ with $2\sin \dfrac{\theta }{2}$, we get
$2\sin 2\theta \sin \dfrac{\theta }{2}=\cos (2\theta -\dfrac{\theta }{2})-\cos (2\theta +\dfrac{\theta }{2})$
That is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}$…………………………………………………… (3)
Similarly for $\sin n\theta $, we get
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos (n\theta -\dfrac{\theta }{2})-\cos (n\theta +\dfrac{\theta }{2})$
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$ …………………………(n)
Now we will add (2),(3)…………………..,(n), we get
$\begin{align}
& 2\sin \theta \sin \dfrac{\theta }{2}+2\sin 2\theta \sin \dfrac{\theta }{2}+...........+2\sin n\theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}+\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}+ \\
& ...........+\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right) \\
\end{align}$
Therefore we observe the terms similar in magnitude but opposite in the sign cancel each other. Hence all the terms cancel each other except the starting and the last term as they have no term opposite to it. now we solve the left terms and take $2\sin \dfrac{\theta }{2}$common from the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\cos \dfrac{\theta }{2}-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$
Now we use the formula $2\sin C\sin D=\cos (C-D)-\cos (C+D)$ in the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=2\sin \dfrac{\left( \dfrac{\theta }{2}+\left( \dfrac{2n+1}{2} \right)\theta \right)}{2}\times \sin \dfrac{\left( \left( \dfrac{2n+1}{2} \right)\theta -\dfrac{\theta }{2} \right)}{2}$
\[(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\dfrac{\sin \dfrac{\left( \dfrac{\theta }{2}+n\theta +\dfrac{\theta }{2} \right)}{2}\times \sin \dfrac{\left( n\theta +\dfrac{\theta }{2}-\dfrac{\theta }{2} \right)}{2}}{\sin \dfrac{\theta }{2}}\]
Then $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $= $\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
That is $s=\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
Thus, Option ( A ) is correct.
Note: In these types of questions, students made mistakes that on expanding the equation by using trigonometric identity, they use the identity on all the terms at one time and they get confused in solving the series. We always try to apply the formula one by one on each term. In this way we cannot ger confused and easily solve the question.
Formula Used:
We will use the formula
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Complete Step- by- step Solution:
Given that sum $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $………………………………. (1)
We know that
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Let us consider first term of sequence (1)
i.e. $\sin \theta $, multiply it by $2\sin \dfrac{\theta }{2}$
we get $2\sin \theta \sin \dfrac{\theta }{2}=\cos (\theta -\dfrac{\theta }{2})-\cos (\theta +\dfrac{\theta }{2})$
that is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}$………………………………………………………...(2)
Same process we do with the second term i.e. $\sin 2\theta $
Multiply $\sin 2\theta $ with $2\sin \dfrac{\theta }{2}$, we get
$2\sin 2\theta \sin \dfrac{\theta }{2}=\cos (2\theta -\dfrac{\theta }{2})-\cos (2\theta +\dfrac{\theta }{2})$
That is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}$…………………………………………………… (3)
Similarly for $\sin n\theta $, we get
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos (n\theta -\dfrac{\theta }{2})-\cos (n\theta +\dfrac{\theta }{2})$
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$ …………………………(n)
Now we will add (2),(3)…………………..,(n), we get
$\begin{align}
& 2\sin \theta \sin \dfrac{\theta }{2}+2\sin 2\theta \sin \dfrac{\theta }{2}+...........+2\sin n\theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}+\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}+ \\
& ...........+\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right) \\
\end{align}$
Therefore we observe the terms similar in magnitude but opposite in the sign cancel each other. Hence all the terms cancel each other except the starting and the last term as they have no term opposite to it. now we solve the left terms and take $2\sin \dfrac{\theta }{2}$common from the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\cos \dfrac{\theta }{2}-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$
Now we use the formula $2\sin C\sin D=\cos (C-D)-\cos (C+D)$ in the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=2\sin \dfrac{\left( \dfrac{\theta }{2}+\left( \dfrac{2n+1}{2} \right)\theta \right)}{2}\times \sin \dfrac{\left( \left( \dfrac{2n+1}{2} \right)\theta -\dfrac{\theta }{2} \right)}{2}$
\[(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\dfrac{\sin \dfrac{\left( \dfrac{\theta }{2}+n\theta +\dfrac{\theta }{2} \right)}{2}\times \sin \dfrac{\left( n\theta +\dfrac{\theta }{2}-\dfrac{\theta }{2} \right)}{2}}{\sin \dfrac{\theta }{2}}\]
Then $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $= $\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
That is $s=\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
Thus, Option ( A ) is correct.
Note: In these types of questions, students made mistakes that on expanding the equation by using trigonometric identity, they use the identity on all the terms at one time and they get confused in solving the series. We always try to apply the formula one by one on each term. In this way we cannot ger confused and easily solve the question.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

