
The sum $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $ equal to?
A. $\dfrac{\sin \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\sin \dfrac{\theta }{2}}$
B. $\dfrac{\cos \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\sin \dfrac{\theta }{2}}$
C. $\dfrac{\sin \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\cos \dfrac{\theta }{2}}$
D. $\dfrac{\cos \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\cos \dfrac{\theta }{2}}$
Answer
162.6k+ views
Hint: In this question, we have to find the sum of $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $. To solve this question, we consider only first term of the series and multiply it by $2\sin \dfrac{\theta }{2}$. As the equation becomes in the form of $2\sin C\sin D$, so we use the formula of $2\sin C\sin D$to expand the equation. Then we use the second term of the series and do the same process till the last term of the series. After that, we add all the equations and adding and subtracting the terms and more simplifying it, we are able to get the sum of the series.
Formula Used:
We will use the formula
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Complete Step- by- step Solution:
Given that sum $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $………………………………. (1)
We know that
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Let us consider first term of sequence (1)
i.e. $\sin \theta $, multiply it by $2\sin \dfrac{\theta }{2}$
we get $2\sin \theta \sin \dfrac{\theta }{2}=\cos (\theta -\dfrac{\theta }{2})-\cos (\theta +\dfrac{\theta }{2})$
that is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}$………………………………………………………...(2)
Same process we do with the second term i.e. $\sin 2\theta $
Multiply $\sin 2\theta $ with $2\sin \dfrac{\theta }{2}$, we get
$2\sin 2\theta \sin \dfrac{\theta }{2}=\cos (2\theta -\dfrac{\theta }{2})-\cos (2\theta +\dfrac{\theta }{2})$
That is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}$…………………………………………………… (3)
Similarly for $\sin n\theta $, we get
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos (n\theta -\dfrac{\theta }{2})-\cos (n\theta +\dfrac{\theta }{2})$
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$ …………………………(n)
Now we will add (2),(3)…………………..,(n), we get
$\begin{align}
& 2\sin \theta \sin \dfrac{\theta }{2}+2\sin 2\theta \sin \dfrac{\theta }{2}+...........+2\sin n\theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}+\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}+ \\
& ...........+\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right) \\
\end{align}$
Therefore we observe the terms similar in magnitude but opposite in the sign cancel each other. Hence all the terms cancel each other except the starting and the last term as they have no term opposite to it. now we solve the left terms and take $2\sin \dfrac{\theta }{2}$common from the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\cos \dfrac{\theta }{2}-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$
Now we use the formula $2\sin C\sin D=\cos (C-D)-\cos (C+D)$ in the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=2\sin \dfrac{\left( \dfrac{\theta }{2}+\left( \dfrac{2n+1}{2} \right)\theta \right)}{2}\times \sin \dfrac{\left( \left( \dfrac{2n+1}{2} \right)\theta -\dfrac{\theta }{2} \right)}{2}$
\[(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\dfrac{\sin \dfrac{\left( \dfrac{\theta }{2}+n\theta +\dfrac{\theta }{2} \right)}{2}\times \sin \dfrac{\left( n\theta +\dfrac{\theta }{2}-\dfrac{\theta }{2} \right)}{2}}{\sin \dfrac{\theta }{2}}\]
Then $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $= $\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
That is $s=\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
Thus, Option ( A ) is correct.
Note: In these types of questions, students made mistakes that on expanding the equation by using trigonometric identity, they use the identity on all the terms at one time and they get confused in solving the series. We always try to apply the formula one by one on each term. In this way we cannot ger confused and easily solve the question.
Formula Used:
We will use the formula
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Complete Step- by- step Solution:
Given that sum $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $………………………………. (1)
We know that
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Let us consider first term of sequence (1)
i.e. $\sin \theta $, multiply it by $2\sin \dfrac{\theta }{2}$
we get $2\sin \theta \sin \dfrac{\theta }{2}=\cos (\theta -\dfrac{\theta }{2})-\cos (\theta +\dfrac{\theta }{2})$
that is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}$………………………………………………………...(2)
Same process we do with the second term i.e. $\sin 2\theta $
Multiply $\sin 2\theta $ with $2\sin \dfrac{\theta }{2}$, we get
$2\sin 2\theta \sin \dfrac{\theta }{2}=\cos (2\theta -\dfrac{\theta }{2})-\cos (2\theta +\dfrac{\theta }{2})$
That is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}$…………………………………………………… (3)
Similarly for $\sin n\theta $, we get
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos (n\theta -\dfrac{\theta }{2})-\cos (n\theta +\dfrac{\theta }{2})$
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$ …………………………(n)
Now we will add (2),(3)…………………..,(n), we get
$\begin{align}
& 2\sin \theta \sin \dfrac{\theta }{2}+2\sin 2\theta \sin \dfrac{\theta }{2}+...........+2\sin n\theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}+\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}+ \\
& ...........+\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right) \\
\end{align}$
Therefore we observe the terms similar in magnitude but opposite in the sign cancel each other. Hence all the terms cancel each other except the starting and the last term as they have no term opposite to it. now we solve the left terms and take $2\sin \dfrac{\theta }{2}$common from the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\cos \dfrac{\theta }{2}-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$
Now we use the formula $2\sin C\sin D=\cos (C-D)-\cos (C+D)$ in the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=2\sin \dfrac{\left( \dfrac{\theta }{2}+\left( \dfrac{2n+1}{2} \right)\theta \right)}{2}\times \sin \dfrac{\left( \left( \dfrac{2n+1}{2} \right)\theta -\dfrac{\theta }{2} \right)}{2}$
\[(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\dfrac{\sin \dfrac{\left( \dfrac{\theta }{2}+n\theta +\dfrac{\theta }{2} \right)}{2}\times \sin \dfrac{\left( n\theta +\dfrac{\theta }{2}-\dfrac{\theta }{2} \right)}{2}}{\sin \dfrac{\theta }{2}}\]
Then $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $= $\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
That is $s=\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
Thus, Option ( A ) is correct.
Note: In these types of questions, students made mistakes that on expanding the equation by using trigonometric identity, they use the identity on all the terms at one time and they get confused in solving the series. We always try to apply the formula one by one on each term. In this way we cannot ger confused and easily solve the question.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
