
The sum $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $ equal to?
A. $\dfrac{\sin \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\sin \dfrac{\theta }{2}}$
B. $\dfrac{\cos \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\sin \dfrac{\theta }{2}}$
C. $\dfrac{\sin \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\cos \dfrac{\theta }{2}}$
D. $\dfrac{\cos \dfrac{1}{2}(n+1)\theta \sin \dfrac{1}{2}n\theta }{\cos \dfrac{\theta }{2}}$
Answer
161.1k+ views
Hint: In this question, we have to find the sum of $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $. To solve this question, we consider only first term of the series and multiply it by $2\sin \dfrac{\theta }{2}$. As the equation becomes in the form of $2\sin C\sin D$, so we use the formula of $2\sin C\sin D$to expand the equation. Then we use the second term of the series and do the same process till the last term of the series. After that, we add all the equations and adding and subtracting the terms and more simplifying it, we are able to get the sum of the series.
Formula Used:
We will use the formula
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Complete Step- by- step Solution:
Given that sum $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $………………………………. (1)
We know that
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Let us consider first term of sequence (1)
i.e. $\sin \theta $, multiply it by $2\sin \dfrac{\theta }{2}$
we get $2\sin \theta \sin \dfrac{\theta }{2}=\cos (\theta -\dfrac{\theta }{2})-\cos (\theta +\dfrac{\theta }{2})$
that is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}$………………………………………………………...(2)
Same process we do with the second term i.e. $\sin 2\theta $
Multiply $\sin 2\theta $ with $2\sin \dfrac{\theta }{2}$, we get
$2\sin 2\theta \sin \dfrac{\theta }{2}=\cos (2\theta -\dfrac{\theta }{2})-\cos (2\theta +\dfrac{\theta }{2})$
That is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}$…………………………………………………… (3)
Similarly for $\sin n\theta $, we get
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos (n\theta -\dfrac{\theta }{2})-\cos (n\theta +\dfrac{\theta }{2})$
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$ …………………………(n)
Now we will add (2),(3)…………………..,(n), we get
$\begin{align}
& 2\sin \theta \sin \dfrac{\theta }{2}+2\sin 2\theta \sin \dfrac{\theta }{2}+...........+2\sin n\theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}+\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}+ \\
& ...........+\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right) \\
\end{align}$
Therefore we observe the terms similar in magnitude but opposite in the sign cancel each other. Hence all the terms cancel each other except the starting and the last term as they have no term opposite to it. now we solve the left terms and take $2\sin \dfrac{\theta }{2}$common from the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\cos \dfrac{\theta }{2}-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$
Now we use the formula $2\sin C\sin D=\cos (C-D)-\cos (C+D)$ in the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=2\sin \dfrac{\left( \dfrac{\theta }{2}+\left( \dfrac{2n+1}{2} \right)\theta \right)}{2}\times \sin \dfrac{\left( \left( \dfrac{2n+1}{2} \right)\theta -\dfrac{\theta }{2} \right)}{2}$
\[(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\dfrac{\sin \dfrac{\left( \dfrac{\theta }{2}+n\theta +\dfrac{\theta }{2} \right)}{2}\times \sin \dfrac{\left( n\theta +\dfrac{\theta }{2}-\dfrac{\theta }{2} \right)}{2}}{\sin \dfrac{\theta }{2}}\]
Then $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $= $\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
That is $s=\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
Thus, Option ( A ) is correct.
Note: In these types of questions, students made mistakes that on expanding the equation by using trigonometric identity, they use the identity on all the terms at one time and they get confused in solving the series. We always try to apply the formula one by one on each term. In this way we cannot ger confused and easily solve the question.
Formula Used:
We will use the formula
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Complete Step- by- step Solution:
Given that sum $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $………………………………. (1)
We know that
$2\sin C\sin D=\cos (C-D)-\cos (C+D)$
Let us consider first term of sequence (1)
i.e. $\sin \theta $, multiply it by $2\sin \dfrac{\theta }{2}$
we get $2\sin \theta \sin \dfrac{\theta }{2}=\cos (\theta -\dfrac{\theta }{2})-\cos (\theta +\dfrac{\theta }{2})$
that is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}$………………………………………………………...(2)
Same process we do with the second term i.e. $\sin 2\theta $
Multiply $\sin 2\theta $ with $2\sin \dfrac{\theta }{2}$, we get
$2\sin 2\theta \sin \dfrac{\theta }{2}=\cos (2\theta -\dfrac{\theta }{2})-\cos (2\theta +\dfrac{\theta }{2})$
That is $2\sin \theta \sin \dfrac{\theta }{2}=\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}$…………………………………………………… (3)
Similarly for $\sin n\theta $, we get
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos (n\theta -\dfrac{\theta }{2})-\cos (n\theta +\dfrac{\theta }{2})$
$2\sin n\theta \sin \dfrac{\theta }{2}=\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$ …………………………(n)
Now we will add (2),(3)…………………..,(n), we get
$\begin{align}
& 2\sin \theta \sin \dfrac{\theta }{2}+2\sin 2\theta \sin \dfrac{\theta }{2}+...........+2\sin n\theta \sin \dfrac{\theta }{2}=\cos \dfrac{\theta }{2}-\cos \dfrac{3\theta }{2}+\cos \dfrac{3\theta }{2}-\cos \dfrac{5\theta }{2}+ \\
& ...........+\cos \left( \left( \dfrac{2n-1}{2} \right)\theta \right)-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right) \\
\end{align}$
Therefore we observe the terms similar in magnitude but opposite in the sign cancel each other. Hence all the terms cancel each other except the starting and the last term as they have no term opposite to it. now we solve the left terms and take $2\sin \dfrac{\theta }{2}$common from the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\cos \dfrac{\theta }{2}-\cos \left( \left( \dfrac{2n+1}{2} \right)\theta \right)$
Now we use the formula $2\sin C\sin D=\cos (C-D)-\cos (C+D)$ in the above equation, we get
$2\sin \dfrac{\theta }{2}(\sin \theta +\sin 2\theta +...........+\sin n\theta )=2\sin \dfrac{\left( \dfrac{\theta }{2}+\left( \dfrac{2n+1}{2} \right)\theta \right)}{2}\times \sin \dfrac{\left( \left( \dfrac{2n+1}{2} \right)\theta -\dfrac{\theta }{2} \right)}{2}$
\[(\sin \theta +\sin 2\theta +...........+\sin n\theta )=\dfrac{\sin \dfrac{\left( \dfrac{\theta }{2}+n\theta +\dfrac{\theta }{2} \right)}{2}\times \sin \dfrac{\left( n\theta +\dfrac{\theta }{2}-\dfrac{\theta }{2} \right)}{2}}{\sin \dfrac{\theta }{2}}\]
Then $s=\sin \theta +\sin 2\theta +..............+\sin n\theta $= $\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
That is $s=\dfrac{\sin \left( \dfrac{n\theta +\theta }{2} \right)\sin \left( \dfrac{n\theta }{2} \right)}{\sin \dfrac{\theta }{2}}$
Thus, Option ( A ) is correct.
Note: In these types of questions, students made mistakes that on expanding the equation by using trigonometric identity, they use the identity on all the terms at one time and they get confused in solving the series. We always try to apply the formula one by one on each term. In this way we cannot ger confused and easily solve the question.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
