
The sum of the series \[3 \cdot 6\, + \,4 \cdot 7\, + 5 \cdot 8\, + ....\] upto \[\left( {n - 2} \right)\]terms
A. \[{n^3} + {n^2} + n + 2\]
B. \[\left( {\dfrac{1}{6}} \right)\left( {2{n^3} + 12{n^2} + 10n - 84} \right)\]
C. \[{n^3} + {n^2} + n\]
D. none of these
Answer
218.1k+ views
Hint: In this question, first we consider the given series as two factors in which both are in AP. Now we have to find the nth term of both the factors and then calculate the sum of the series.
Formula used:
1. \[{a_n} = a + \left( {n - 1} \right)d\]
2. \[\sum {{n^2} = \dfrac{{n\,\left( {n - 1} \right)\,\,\left( {2n + 1} \right)}}{6}} \]
3. \[\sum {n\, = \dfrac{{n\,\left( {n + 1} \right)}}{2}} \]
Complete step-by-step solution:
Given series is \[3 \cdot 6 + 4 \cdot 7 + 5 \cdot 8.....\]
It has two factors the first factor is \[3,4,5...\] which has a common difference \[d = 1\]
Now we find the \[{n_{th}}\] term by the formula \[{a_n} = a + \left( {n - 1} \right)d\]:
\[
{a_n} = 3 + \left( {n - 1} \right) \cdot 1 \\
= 3 + \left( {n - 1} \right) \\
= n + 2 \\
\]
Now the second factor is \[6,7,8,...\] which has a common difference \[d = 1\]
Now we find the \[{n_{th}}\] term by the formula \[{a_n} = a + \left( {n - 1} \right)d\]:
\[
{a_n} = 6 + \left( {n - 1} \right) \cdot 1 \\
= 6 + \left( {n - 1} \right) \\
= n + 5 \\
\]
Thus, the \[{n_{th}}\]term of the given series is \[{a_n} = \left( {n + 2} \right)\left( {n + 5} \right)\]
Therefore, the sum of the \[{n_{th}}\] term of the given series is \[{S_n} = \sum\limits_{n = 1}^{n - 2} {\left( {n + 2} \right)\,\left( {n + 5} \right)} \]
By multiplying \[\left( {n + 2} \right)\] by \[\left( {n + 5} \right)\] we obtain:
\[
{S_n} = \sum\limits_{n = 1}^{n - 2} {\,n\,} \left( {n + 5} \right) + \,2\left( {n + 5} \right) \\
= \sum\limits_{n = 1}^{n - 2} {\,{n^2} + 5n\, + 2n\, + 10} \\
= \sum\limits_{n = 1}^{n - 2} {{n^2} + 7n + 10} \\
\]
By splitting the terms, we get
\[
{S_n} = \sum\limits_{n = 1}^{n - 2} {{n^2} + } \,\sum\limits_{n = 1}^{n - 2} {\,7n\, + \sum\limits_{n = 1}^{n - 2} {\,10} } \\
= \sum\limits_{n = 1}^{n - 2} {{n^2} + } \,7\,\,\sum\limits_{n = 1}^{n - 2} {\,n\, + \sum\limits_{n = 1}^{n - 2} {\,10} } \,\,...\left( 1 \right) \\
\]
We know that sum of squares of first n natural numbers is given by \[\sum {{n^2} = \dfrac{{n\,\left( {n + 1} \right)\,\,\left( {2n + 1} \right)}}{6}} \] and the sum of the first n natural number is given by \[\sum {n\, = \dfrac{{n\,\left( {n + 1} \right)}}{2}} \]
So, \[{S_n} = \dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)\,\,\left( {2\left( {n - 2} \right) + 1} \right)}}{6} + 7\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2} + 10\left( {n - 2} \right)\]
Now by simplifying the above equation, we get
\[
{S_n} = \dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)\,\,\left( {2n - 4 + 1} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {n - 1} \right)\left( {2n - 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {2{n^2} - 3n - 2n + 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {2{n^2} - 5n + 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
\]
Further solving we get,
\[
{S_n} = \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} - 5n + 3}}{6} + \dfrac{{7\left( {n - 1} \right)}}{2} + 10} \right] \\
= \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} - 5n + 3 + 21n - 21 + 60}}{6}} \right] \\
= \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} + 16n + 42}}{6}} \right] \\
= \left( {\dfrac{1}{6}} \right)\left( {2{n^3} + 16{n^2} + 42n - 4{n^2} - 32n - 84} \right) \\
\]
Therefore, the sum of series is \[\left( {\dfrac{1}{6}} \right)\left( {2{n^3} + 12{n^2} + 10n - 84} \right)\]
Hence, option(B) is correct
Note: Because there are n terms, students must take the summation when calculating the sum. There are 'n-2' in the terms, and the summation must take its limit from 1 to n-2. You should also be able to calculate the sum of the first n natural numbers and the sum of the squares of the first n natural numbers.
Formula used:
1. \[{a_n} = a + \left( {n - 1} \right)d\]
2. \[\sum {{n^2} = \dfrac{{n\,\left( {n - 1} \right)\,\,\left( {2n + 1} \right)}}{6}} \]
3. \[\sum {n\, = \dfrac{{n\,\left( {n + 1} \right)}}{2}} \]
Complete step-by-step solution:
Given series is \[3 \cdot 6 + 4 \cdot 7 + 5 \cdot 8.....\]
It has two factors the first factor is \[3,4,5...\] which has a common difference \[d = 1\]
Now we find the \[{n_{th}}\] term by the formula \[{a_n} = a + \left( {n - 1} \right)d\]:
\[
{a_n} = 3 + \left( {n - 1} \right) \cdot 1 \\
= 3 + \left( {n - 1} \right) \\
= n + 2 \\
\]
Now the second factor is \[6,7,8,...\] which has a common difference \[d = 1\]
Now we find the \[{n_{th}}\] term by the formula \[{a_n} = a + \left( {n - 1} \right)d\]:
\[
{a_n} = 6 + \left( {n - 1} \right) \cdot 1 \\
= 6 + \left( {n - 1} \right) \\
= n + 5 \\
\]
Thus, the \[{n_{th}}\]term of the given series is \[{a_n} = \left( {n + 2} \right)\left( {n + 5} \right)\]
Therefore, the sum of the \[{n_{th}}\] term of the given series is \[{S_n} = \sum\limits_{n = 1}^{n - 2} {\left( {n + 2} \right)\,\left( {n + 5} \right)} \]
By multiplying \[\left( {n + 2} \right)\] by \[\left( {n + 5} \right)\] we obtain:
\[
{S_n} = \sum\limits_{n = 1}^{n - 2} {\,n\,} \left( {n + 5} \right) + \,2\left( {n + 5} \right) \\
= \sum\limits_{n = 1}^{n - 2} {\,{n^2} + 5n\, + 2n\, + 10} \\
= \sum\limits_{n = 1}^{n - 2} {{n^2} + 7n + 10} \\
\]
By splitting the terms, we get
\[
{S_n} = \sum\limits_{n = 1}^{n - 2} {{n^2} + } \,\sum\limits_{n = 1}^{n - 2} {\,7n\, + \sum\limits_{n = 1}^{n - 2} {\,10} } \\
= \sum\limits_{n = 1}^{n - 2} {{n^2} + } \,7\,\,\sum\limits_{n = 1}^{n - 2} {\,n\, + \sum\limits_{n = 1}^{n - 2} {\,10} } \,\,...\left( 1 \right) \\
\]
We know that sum of squares of first n natural numbers is given by \[\sum {{n^2} = \dfrac{{n\,\left( {n + 1} \right)\,\,\left( {2n + 1} \right)}}{6}} \] and the sum of the first n natural number is given by \[\sum {n\, = \dfrac{{n\,\left( {n + 1} \right)}}{2}} \]
So, \[{S_n} = \dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)\,\,\left( {2\left( {n - 2} \right) + 1} \right)}}{6} + 7\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2} + 10\left( {n - 2} \right)\]
Now by simplifying the above equation, we get
\[
{S_n} = \dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)\,\,\left( {2n - 4 + 1} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {n - 1} \right)\left( {2n - 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {2{n^2} - 3n - 2n + 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {2{n^2} - 5n + 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
\]
Further solving we get,
\[
{S_n} = \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} - 5n + 3}}{6} + \dfrac{{7\left( {n - 1} \right)}}{2} + 10} \right] \\
= \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} - 5n + 3 + 21n - 21 + 60}}{6}} \right] \\
= \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} + 16n + 42}}{6}} \right] \\
= \left( {\dfrac{1}{6}} \right)\left( {2{n^3} + 16{n^2} + 42n - 4{n^2} - 32n - 84} \right) \\
\]
Therefore, the sum of series is \[\left( {\dfrac{1}{6}} \right)\left( {2{n^3} + 12{n^2} + 10n - 84} \right)\]
Hence, option(B) is correct
Note: Because there are n terms, students must take the summation when calculating the sum. There are 'n-2' in the terms, and the summation must take its limit from 1 to n-2. You should also be able to calculate the sum of the first n natural numbers and the sum of the squares of the first n natural numbers.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

