
The sum of the infinite series $1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........$ is equal to
1. $\dfrac{9}{4}$
2. $\dfrac{{15}}{4}$
3. $\dfrac{{13}}{4}$
4. $\dfrac{{11}}{4}$
Answer
232.8k+ views
Hint: In this question, an infinity series $1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........$ is given. First, divide the series by $3$then subtract both the equations. Solve further, while solving you’ll get the infinite G.P. Series and use the formula of sum of infinite terms of G.P..
Formula used:
Sum of infinite terms of G.P. –
$S = a + ar + a{r^2} + a{r^3} + - - - - - + \infty $
$S = \dfrac{a}{{1 - r}}$
Complete step by step solution:
Given that,
$S = 1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........ + \infty - - - - - \left( 1 \right)$
Divide above equation by $3$,
$\dfrac{S}{3} = \left( {\dfrac{1}{3}} \right) + \left( {\dfrac{2}{{{3^2}}}} \right) + \left( {\dfrac{7}{{{3^3}}}} \right) + \left( {\dfrac{{12}}{{{3^4}}}} \right) + \left( {\dfrac{{17}}{{{3^5}}}} \right) + \left( {\dfrac{{22}}{{{3^6}}}} \right) + ........ + \infty - - - - - \left( 2 \right)$
Subtract equation (1) and (2)
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{3^3}}} + - - - - - - + \infty $
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + \dfrac{1}{{{3^4}}} + - - - - - - + \infty } \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{{\left( {\dfrac{1}{3}} \right)}}{{1 - \left( {\dfrac{1}{3}} \right)}}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} \times \dfrac{3}{2}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{6}$
$\dfrac{{2S}}{3} = \dfrac{{13}}{6}$
$S = \dfrac{{13}}{4}$
Hence, Option (3) is the correct answer.
Note: The key concept involved in solving this problem is the good knowledge of Series and sequence. Students must know whether the series is in A.P. or G.P.. For infinite and finite series formulas are changed. So, apply carefully.
Formula used:
Sum of infinite terms of G.P. –
$S = a + ar + a{r^2} + a{r^3} + - - - - - + \infty $
$S = \dfrac{a}{{1 - r}}$
Complete step by step solution:
Given that,
$S = 1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........ + \infty - - - - - \left( 1 \right)$
Divide above equation by $3$,
$\dfrac{S}{3} = \left( {\dfrac{1}{3}} \right) + \left( {\dfrac{2}{{{3^2}}}} \right) + \left( {\dfrac{7}{{{3^3}}}} \right) + \left( {\dfrac{{12}}{{{3^4}}}} \right) + \left( {\dfrac{{17}}{{{3^5}}}} \right) + \left( {\dfrac{{22}}{{{3^6}}}} \right) + ........ + \infty - - - - - \left( 2 \right)$
Subtract equation (1) and (2)
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{3^3}}} + - - - - - - + \infty $
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + \dfrac{1}{{{3^4}}} + - - - - - - + \infty } \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{{\left( {\dfrac{1}{3}} \right)}}{{1 - \left( {\dfrac{1}{3}} \right)}}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} \times \dfrac{3}{2}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{6}$
$\dfrac{{2S}}{3} = \dfrac{{13}}{6}$
$S = \dfrac{{13}}{4}$
Hence, Option (3) is the correct answer.
Note: The key concept involved in solving this problem is the good knowledge of Series and sequence. Students must know whether the series is in A.P. or G.P.. For infinite and finite series formulas are changed. So, apply carefully.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

