
The sum of the infinite series $1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........$ is equal to
1. $\dfrac{9}{4}$
2. $\dfrac{{15}}{4}$
3. $\dfrac{{13}}{4}$
4. $\dfrac{{11}}{4}$
Answer
216.3k+ views
Hint: In this question, an infinity series $1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........$ is given. First, divide the series by $3$then subtract both the equations. Solve further, while solving you’ll get the infinite G.P. Series and use the formula of sum of infinite terms of G.P..
Formula used:
Sum of infinite terms of G.P. –
$S = a + ar + a{r^2} + a{r^3} + - - - - - + \infty $
$S = \dfrac{a}{{1 - r}}$
Complete step by step solution:
Given that,
$S = 1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........ + \infty - - - - - \left( 1 \right)$
Divide above equation by $3$,
$\dfrac{S}{3} = \left( {\dfrac{1}{3}} \right) + \left( {\dfrac{2}{{{3^2}}}} \right) + \left( {\dfrac{7}{{{3^3}}}} \right) + \left( {\dfrac{{12}}{{{3^4}}}} \right) + \left( {\dfrac{{17}}{{{3^5}}}} \right) + \left( {\dfrac{{22}}{{{3^6}}}} \right) + ........ + \infty - - - - - \left( 2 \right)$
Subtract equation (1) and (2)
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{3^3}}} + - - - - - - + \infty $
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + \dfrac{1}{{{3^4}}} + - - - - - - + \infty } \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{{\left( {\dfrac{1}{3}} \right)}}{{1 - \left( {\dfrac{1}{3}} \right)}}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} \times \dfrac{3}{2}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{6}$
$\dfrac{{2S}}{3} = \dfrac{{13}}{6}$
$S = \dfrac{{13}}{4}$
Hence, Option (3) is the correct answer.
Note: The key concept involved in solving this problem is the good knowledge of Series and sequence. Students must know whether the series is in A.P. or G.P.. For infinite and finite series formulas are changed. So, apply carefully.
Formula used:
Sum of infinite terms of G.P. –
$S = a + ar + a{r^2} + a{r^3} + - - - - - + \infty $
$S = \dfrac{a}{{1 - r}}$
Complete step by step solution:
Given that,
$S = 1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........ + \infty - - - - - \left( 1 \right)$
Divide above equation by $3$,
$\dfrac{S}{3} = \left( {\dfrac{1}{3}} \right) + \left( {\dfrac{2}{{{3^2}}}} \right) + \left( {\dfrac{7}{{{3^3}}}} \right) + \left( {\dfrac{{12}}{{{3^4}}}} \right) + \left( {\dfrac{{17}}{{{3^5}}}} \right) + \left( {\dfrac{{22}}{{{3^6}}}} \right) + ........ + \infty - - - - - \left( 2 \right)$
Subtract equation (1) and (2)
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{3^3}}} + - - - - - - + \infty $
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + \dfrac{1}{{{3^4}}} + - - - - - - + \infty } \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{{\left( {\dfrac{1}{3}} \right)}}{{1 - \left( {\dfrac{1}{3}} \right)}}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} \times \dfrac{3}{2}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{6}$
$\dfrac{{2S}}{3} = \dfrac{{13}}{6}$
$S = \dfrac{{13}}{4}$
Hence, Option (3) is the correct answer.
Note: The key concept involved in solving this problem is the good knowledge of Series and sequence. Students must know whether the series is in A.P. or G.P.. For infinite and finite series formulas are changed. So, apply carefully.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

