
The Solution set of $x - \sqrt {1 - \left| x \right|} < 0$ is
1. $\left[ { - 1,\dfrac{{\left( { - 1 + \sqrt 5 } \right)}}{2}} \right]$
2. $\left[ { - 1,1} \right]$
3. $\left[ { - 1,\dfrac{{\left( {1 + \sqrt 5 } \right)}}{2}} \right]$
4. $\left[ {1, - 1} \right]$
Answer
217.2k+ views
Hint:Start by solving the square root condition of the given inequality. Now Solving inequality till the required equation will be a quadratic equation. Find the roots and compare both situations and write the values.
Formula Used:
Quadratic inequality –
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step Solution:
Given that,
$x - \sqrt {1 - \left| x \right|} < 0 - - - - - (1)$
From above inequality,
$1 + \left| x \right| \geqslant 0$
$1 \geqslant \left| x \right|$
$1 \geqslant \pm x$
$ \Rightarrow - 1 \leqslant x \leqslant 1 - - - - - (2)$
Now from equation (1),
$x < \sqrt {1 - \left| x \right|} $
${x^2} > 1 - \left| x \right|$
${x^2} > 1 - x$
${x^2} + x - 1 > 0$
Compare the required quadratic inequality with general quadratic equation $a{x^2} + bx + c$
$ \Rightarrow a = 1,b = 1,c = - 1$
Using quadratic formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$x = \dfrac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
$x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}$
$x = \dfrac{{ - 1 + \sqrt 5 }}{2}\left( {x \ne \dfrac{{ - 1 - \sqrt 5 }}{2} < - 1} \right) - - - - - (3)$
From equation (2) and (3)
$x \in \left[ { - 1,\dfrac{{\left( { - 1 + \sqrt 5 } \right)}}{2}} \right]$
$ \Rightarrow $Option (1) is the correct .
Therefore, the correct option is 1.
Note: In such type of question, the value inside the square root should be greater than or equal to zero. Solve the inequality the same as equality but multiplying and dividing any number in inequality change the sign of inequality. If the required values are equal also use the square(closed) bracket and if the values are only less or greater then apply a circular(open) bracket.
Formula Used:
Quadratic inequality –
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step Solution:
Given that,
$x - \sqrt {1 - \left| x \right|} < 0 - - - - - (1)$
From above inequality,
$1 + \left| x \right| \geqslant 0$
$1 \geqslant \left| x \right|$
$1 \geqslant \pm x$
$ \Rightarrow - 1 \leqslant x \leqslant 1 - - - - - (2)$
Now from equation (1),
$x < \sqrt {1 - \left| x \right|} $
${x^2} > 1 - \left| x \right|$
${x^2} > 1 - x$
${x^2} + x - 1 > 0$
Compare the required quadratic inequality with general quadratic equation $a{x^2} + bx + c$
$ \Rightarrow a = 1,b = 1,c = - 1$
Using quadratic formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$x = \dfrac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
$x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}$
$x = \dfrac{{ - 1 + \sqrt 5 }}{2}\left( {x \ne \dfrac{{ - 1 - \sqrt 5 }}{2} < - 1} \right) - - - - - (3)$
From equation (2) and (3)
$x \in \left[ { - 1,\dfrac{{\left( { - 1 + \sqrt 5 } \right)}}{2}} \right]$
$ \Rightarrow $Option (1) is the correct .
Therefore, the correct option is 1.
Note: In such type of question, the value inside the square root should be greater than or equal to zero. Solve the inequality the same as equality but multiplying and dividing any number in inequality change the sign of inequality. If the required values are equal also use the square(closed) bracket and if the values are only less or greater then apply a circular(open) bracket.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

