
The results given in the below table were obtained during kinetic studies of the following reaction: \[{\rm{2A + B}} \to {\rm{C + D}}\]
Experiment [A] / molL-1 [B] / molL-1 Initial rate/molL-1min-1 I 0.1 0.1 \[{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}\] II 0.1 0.2 \[{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] III 0.2 0.1 \[{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] IV X 0.2 \[{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] V 0.3 Y \[2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}\]
X and Y in the given table are respectively:
1) \[0.4,\,0.4\]
2) \[0.3,\,0.4\]
3) \[0.4,\,0.3\]
4) \[0.3,\,0.3\]
Experiment | [A] / molL-1 | [B] / molL-1 | Initial rate/molL-1min-1 |
I | 0.1 | 0.1 | \[{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}\] |
II | 0.1 | 0.2 | \[{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] |
III | 0.2 | 0.1 | \[{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] |
IV | X | 0.2 | \[{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] |
V | 0.3 | Y | \[2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}\] |
Answer
163.8k+ views
Hint: The order of a reaction may be defined as the sum of the exponents to which the concentration terms in the rate law are raised to express the observed rate of reaction.
From general equation of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\], the rate expression can be written as, \[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\].
\[{\rm{a}}\] and \[{\rm{b}}\]are called the orders of the reaction with respect to \[{\rm{A}}\]and \[{\rm{B}}\]. Depending on whether \[{\rm{(a + b)}}\]is equal to \[{\rm{0,1,2, or 3}}\], the reactions are said to be of zero order, first order, second order, and third order respectively.
Complete Step by Step Solution:
Rate equation may be defined as the relationship between the concentrations of the reactants and the observed reaction rate. Each reaction has its own rate equation which may be determined experimentally by altering the concentration of the reactants and then measuring the change in rate.
Consider a general reaction of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\]
The reaction rate is usually proportional to the concentrations of the reactants \[{\rm{[A]}}\] and \[{\rm{[B]}}\] which are raised to powers \[{\rm{a}}\] and \[{\rm{b}}\] respectively. The rate expression can, then be written as:
\[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\], where \[{{\rm{k}}_{\rm{r}}} = \]rate constant.
As per given data,
The equation is as: \[{\rm{2A + B}} \to {\rm{C + D}}\]
Suppose the rate equation is, \[{\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\]
where, \[{\rm{a}}\] and \[{\rm{b}}\]are the orders with respect to \[{\rm{[A]}}\] and \[{\rm{[B]}}\]
Substituting the given values in the rate equation we get,
\[{\rm{(rate) I 6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
\[{\rm{(rate) II 2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.2)}}^{\rm{b}}}\]
\[{\rm{(rate) III 1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
Dividing experiment (I) by experiment (II) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.2)}}}^{\rm{b}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{\rm{1}}}{{\rm{4}}}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow {\rm{b = 2}}$
So, order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\].
Also, dividing experiment (I) by experiment (III) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{\rm{1}}}{2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^1}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\ $
$\Rightarrow {\rm{a = 1}}$
So, order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\].
Again, dividing experiment (I) by experiment (IV) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (X}}{{\rm{)}}^1}{{(0.2)}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = }}\dfrac{{0.001}}{{0.04{\rm{X}}}}\\ $
$\Rightarrow {\rm{X}} = \dfrac{{12 \times 0.001}}{{1 \times 0.04}}\\$
$ \Rightarrow {\rm{X}} = \dfrac{{0.012}}{{0.04}}\\$
$ \Rightarrow {\rm{X}} = 0.3$
Hence, the value of X is found to be \[{\rm{0}}{\rm{.3}}\]
Finally, dividing experiment (I) by experiment (V) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.3}}{{\rm{)}}^1}{{({\rm{Y}})}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = }}\dfrac{{0.001}}{{0.3{{\rm{Y}}^{\rm{2}}}}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{48 \times 0.001}}{{1 \times 0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{0.048}}{{0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = 0.16\\\Rightarrow {{\rm{Y}}^{\rm{2}}} = {(0.4)^2}\\ $
$\Rightarrow {\rm{Y}} = 0.4$
Hence, the value of Y is found to be \[0.4\]
Therefore, option (2) is correct.
Note: The order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\]and the order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\]. The overall order for the reaction will be \[(1 + 2)\, = 3\]. This implies that the reaction is of third order overall. Also, the units of rate constant (\[{\rm{k}}\]) for the given reaction can be calculated.
${\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^1}{{\rm{[B]}}^2}\\ $
$\Rightarrow {\rm{k}} = \dfrac{{{\rm{rate}}}}{{{{{\rm{[A]}}}^{\rm{1}}}{{{\rm{[B]}}}^{\rm{2}}}}}\\ \Rightarrow {\rm{k}} = \dfrac{{{\rm{mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}}}{{{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{1}}}{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{2}}}}}\\$
$ \Rightarrow {\rm{k}} = {\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}$
The units of rate constant is found to be \[{\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\].
From general equation of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\], the rate expression can be written as, \[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\].
\[{\rm{a}}\] and \[{\rm{b}}\]are called the orders of the reaction with respect to \[{\rm{A}}\]and \[{\rm{B}}\]. Depending on whether \[{\rm{(a + b)}}\]is equal to \[{\rm{0,1,2, or 3}}\], the reactions are said to be of zero order, first order, second order, and third order respectively.
Complete Step by Step Solution:
Rate equation may be defined as the relationship between the concentrations of the reactants and the observed reaction rate. Each reaction has its own rate equation which may be determined experimentally by altering the concentration of the reactants and then measuring the change in rate.
Consider a general reaction of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\]
The reaction rate is usually proportional to the concentrations of the reactants \[{\rm{[A]}}\] and \[{\rm{[B]}}\] which are raised to powers \[{\rm{a}}\] and \[{\rm{b}}\] respectively. The rate expression can, then be written as:
\[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\], where \[{{\rm{k}}_{\rm{r}}} = \]rate constant.
As per given data,
The equation is as: \[{\rm{2A + B}} \to {\rm{C + D}}\]
Suppose the rate equation is, \[{\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\]
where, \[{\rm{a}}\] and \[{\rm{b}}\]are the orders with respect to \[{\rm{[A]}}\] and \[{\rm{[B]}}\]
Substituting the given values in the rate equation we get,
\[{\rm{(rate) I 6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
\[{\rm{(rate) II 2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.2)}}^{\rm{b}}}\]
\[{\rm{(rate) III 1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
Dividing experiment (I) by experiment (II) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.2)}}}^{\rm{b}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{\rm{1}}}{{\rm{4}}}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow {\rm{b = 2}}$
So, order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\].
Also, dividing experiment (I) by experiment (III) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{\rm{1}}}{2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^1}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\ $
$\Rightarrow {\rm{a = 1}}$
So, order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\].
Again, dividing experiment (I) by experiment (IV) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (X}}{{\rm{)}}^1}{{(0.2)}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = }}\dfrac{{0.001}}{{0.04{\rm{X}}}}\\ $
$\Rightarrow {\rm{X}} = \dfrac{{12 \times 0.001}}{{1 \times 0.04}}\\$
$ \Rightarrow {\rm{X}} = \dfrac{{0.012}}{{0.04}}\\$
$ \Rightarrow {\rm{X}} = 0.3$
Hence, the value of X is found to be \[{\rm{0}}{\rm{.3}}\]
Finally, dividing experiment (I) by experiment (V) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.3}}{{\rm{)}}^1}{{({\rm{Y}})}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = }}\dfrac{{0.001}}{{0.3{{\rm{Y}}^{\rm{2}}}}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{48 \times 0.001}}{{1 \times 0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{0.048}}{{0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = 0.16\\\Rightarrow {{\rm{Y}}^{\rm{2}}} = {(0.4)^2}\\ $
$\Rightarrow {\rm{Y}} = 0.4$
Hence, the value of Y is found to be \[0.4\]
Therefore, option (2) is correct.
Note: The order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\]and the order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\]. The overall order for the reaction will be \[(1 + 2)\, = 3\]. This implies that the reaction is of third order overall. Also, the units of rate constant (\[{\rm{k}}\]) for the given reaction can be calculated.
${\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^1}{{\rm{[B]}}^2}\\ $
$\Rightarrow {\rm{k}} = \dfrac{{{\rm{rate}}}}{{{{{\rm{[A]}}}^{\rm{1}}}{{{\rm{[B]}}}^{\rm{2}}}}}\\ \Rightarrow {\rm{k}} = \dfrac{{{\rm{mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}}}{{{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{1}}}{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{2}}}}}\\$
$ \Rightarrow {\rm{k}} = {\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}$
The units of rate constant is found to be \[{\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\].
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Thermodynamics Class 11 Notes: CBSE Chapter 5

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
