
The results given in the below table were obtained during kinetic studies of the following reaction: \[{\rm{2A + B}} \to {\rm{C + D}}\]
Experiment [A] / molL-1 [B] / molL-1 Initial rate/molL-1min-1 I 0.1 0.1 \[{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}\] II 0.1 0.2 \[{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] III 0.2 0.1 \[{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] IV X 0.2 \[{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] V 0.3 Y \[2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}\]
X and Y in the given table are respectively:
1) \[0.4,\,0.4\]
2) \[0.3,\,0.4\]
3) \[0.4,\,0.3\]
4) \[0.3,\,0.3\]
| Experiment | [A] / molL-1 | [B] / molL-1 | Initial rate/molL-1min-1 |
| I | 0.1 | 0.1 | \[{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}\] |
| II | 0.1 | 0.2 | \[{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] |
| III | 0.2 | 0.1 | \[{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] |
| IV | X | 0.2 | \[{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] |
| V | 0.3 | Y | \[2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}\] |
Answer
218.7k+ views
Hint: The order of a reaction may be defined as the sum of the exponents to which the concentration terms in the rate law are raised to express the observed rate of reaction.
From general equation of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\], the rate expression can be written as, \[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\].
\[{\rm{a}}\] and \[{\rm{b}}\]are called the orders of the reaction with respect to \[{\rm{A}}\]and \[{\rm{B}}\]. Depending on whether \[{\rm{(a + b)}}\]is equal to \[{\rm{0,1,2, or 3}}\], the reactions are said to be of zero order, first order, second order, and third order respectively.
Complete Step by Step Solution:
Rate equation may be defined as the relationship between the concentrations of the reactants and the observed reaction rate. Each reaction has its own rate equation which may be determined experimentally by altering the concentration of the reactants and then measuring the change in rate.
Consider a general reaction of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\]
The reaction rate is usually proportional to the concentrations of the reactants \[{\rm{[A]}}\] and \[{\rm{[B]}}\] which are raised to powers \[{\rm{a}}\] and \[{\rm{b}}\] respectively. The rate expression can, then be written as:
\[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\], where \[{{\rm{k}}_{\rm{r}}} = \]rate constant.
As per given data,
The equation is as: \[{\rm{2A + B}} \to {\rm{C + D}}\]
Suppose the rate equation is, \[{\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\]
where, \[{\rm{a}}\] and \[{\rm{b}}\]are the orders with respect to \[{\rm{[A]}}\] and \[{\rm{[B]}}\]
Substituting the given values in the rate equation we get,
\[{\rm{(rate) I 6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
\[{\rm{(rate) II 2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.2)}}^{\rm{b}}}\]
\[{\rm{(rate) III 1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
Dividing experiment (I) by experiment (II) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.2)}}}^{\rm{b}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{\rm{1}}}{{\rm{4}}}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow {\rm{b = 2}}$
So, order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\].
Also, dividing experiment (I) by experiment (III) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{\rm{1}}}{2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^1}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\ $
$\Rightarrow {\rm{a = 1}}$
So, order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\].
Again, dividing experiment (I) by experiment (IV) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (X}}{{\rm{)}}^1}{{(0.2)}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = }}\dfrac{{0.001}}{{0.04{\rm{X}}}}\\ $
$\Rightarrow {\rm{X}} = \dfrac{{12 \times 0.001}}{{1 \times 0.04}}\\$
$ \Rightarrow {\rm{X}} = \dfrac{{0.012}}{{0.04}}\\$
$ \Rightarrow {\rm{X}} = 0.3$
Hence, the value of X is found to be \[{\rm{0}}{\rm{.3}}\]
Finally, dividing experiment (I) by experiment (V) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.3}}{{\rm{)}}^1}{{({\rm{Y}})}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = }}\dfrac{{0.001}}{{0.3{{\rm{Y}}^{\rm{2}}}}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{48 \times 0.001}}{{1 \times 0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{0.048}}{{0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = 0.16\\\Rightarrow {{\rm{Y}}^{\rm{2}}} = {(0.4)^2}\\ $
$\Rightarrow {\rm{Y}} = 0.4$
Hence, the value of Y is found to be \[0.4\]
Therefore, option (2) is correct.
Note: The order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\]and the order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\]. The overall order for the reaction will be \[(1 + 2)\, = 3\]. This implies that the reaction is of third order overall. Also, the units of rate constant (\[{\rm{k}}\]) for the given reaction can be calculated.
${\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^1}{{\rm{[B]}}^2}\\ $
$\Rightarrow {\rm{k}} = \dfrac{{{\rm{rate}}}}{{{{{\rm{[A]}}}^{\rm{1}}}{{{\rm{[B]}}}^{\rm{2}}}}}\\ \Rightarrow {\rm{k}} = \dfrac{{{\rm{mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}}}{{{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{1}}}{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{2}}}}}\\$
$ \Rightarrow {\rm{k}} = {\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}$
The units of rate constant is found to be \[{\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\].
From general equation of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\], the rate expression can be written as, \[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\].
\[{\rm{a}}\] and \[{\rm{b}}\]are called the orders of the reaction with respect to \[{\rm{A}}\]and \[{\rm{B}}\]. Depending on whether \[{\rm{(a + b)}}\]is equal to \[{\rm{0,1,2, or 3}}\], the reactions are said to be of zero order, first order, second order, and third order respectively.
Complete Step by Step Solution:
Rate equation may be defined as the relationship between the concentrations of the reactants and the observed reaction rate. Each reaction has its own rate equation which may be determined experimentally by altering the concentration of the reactants and then measuring the change in rate.
Consider a general reaction of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\]
The reaction rate is usually proportional to the concentrations of the reactants \[{\rm{[A]}}\] and \[{\rm{[B]}}\] which are raised to powers \[{\rm{a}}\] and \[{\rm{b}}\] respectively. The rate expression can, then be written as:
\[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\], where \[{{\rm{k}}_{\rm{r}}} = \]rate constant.
As per given data,
The equation is as: \[{\rm{2A + B}} \to {\rm{C + D}}\]
Suppose the rate equation is, \[{\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\]
where, \[{\rm{a}}\] and \[{\rm{b}}\]are the orders with respect to \[{\rm{[A]}}\] and \[{\rm{[B]}}\]
Substituting the given values in the rate equation we get,
\[{\rm{(rate) I 6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
\[{\rm{(rate) II 2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.2)}}^{\rm{b}}}\]
\[{\rm{(rate) III 1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
Dividing experiment (I) by experiment (II) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.2)}}}^{\rm{b}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{\rm{1}}}{{\rm{4}}}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow {\rm{b = 2}}$
So, order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\].
Also, dividing experiment (I) by experiment (III) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{\rm{1}}}{2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^1}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\ $
$\Rightarrow {\rm{a = 1}}$
So, order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\].
Again, dividing experiment (I) by experiment (IV) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (X}}{{\rm{)}}^1}{{(0.2)}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = }}\dfrac{{0.001}}{{0.04{\rm{X}}}}\\ $
$\Rightarrow {\rm{X}} = \dfrac{{12 \times 0.001}}{{1 \times 0.04}}\\$
$ \Rightarrow {\rm{X}} = \dfrac{{0.012}}{{0.04}}\\$
$ \Rightarrow {\rm{X}} = 0.3$
Hence, the value of X is found to be \[{\rm{0}}{\rm{.3}}\]
Finally, dividing experiment (I) by experiment (V) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.3}}{{\rm{)}}^1}{{({\rm{Y}})}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = }}\dfrac{{0.001}}{{0.3{{\rm{Y}}^{\rm{2}}}}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{48 \times 0.001}}{{1 \times 0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{0.048}}{{0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = 0.16\\\Rightarrow {{\rm{Y}}^{\rm{2}}} = {(0.4)^2}\\ $
$\Rightarrow {\rm{Y}} = 0.4$
Hence, the value of Y is found to be \[0.4\]
Therefore, option (2) is correct.
Note: The order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\]and the order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\]. The overall order for the reaction will be \[(1 + 2)\, = 3\]. This implies that the reaction is of third order overall. Also, the units of rate constant (\[{\rm{k}}\]) for the given reaction can be calculated.
${\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^1}{{\rm{[B]}}^2}\\ $
$\Rightarrow {\rm{k}} = \dfrac{{{\rm{rate}}}}{{{{{\rm{[A]}}}^{\rm{1}}}{{{\rm{[B]}}}^{\rm{2}}}}}\\ \Rightarrow {\rm{k}} = \dfrac{{{\rm{mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}}}{{{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{1}}}{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{2}}}}}\\$
$ \Rightarrow {\rm{k}} = {\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}$
The units of rate constant is found to be \[{\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\].
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

