
The results given in the below table were obtained during kinetic studies of the following reaction: \[{\rm{2A + B}} \to {\rm{C + D}}\]
Experiment [A] / molL-1 [B] / molL-1 Initial rate/molL-1min-1 I 0.1 0.1 \[{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}\] II 0.1 0.2 \[{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] III 0.2 0.1 \[{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] IV X 0.2 \[{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] V 0.3 Y \[2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}\]
X and Y in the given table are respectively:
1) \[0.4,\,0.4\]
2) \[0.3,\,0.4\]
3) \[0.4,\,0.3\]
4) \[0.3,\,0.3\]
Experiment | [A] / molL-1 | [B] / molL-1 | Initial rate/molL-1min-1 |
I | 0.1 | 0.1 | \[{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}\] |
II | 0.1 | 0.2 | \[{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] |
III | 0.2 | 0.1 | \[{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] |
IV | X | 0.2 | \[{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}\] |
V | 0.3 | Y | \[2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}\] |
Answer
162.9k+ views
Hint: The order of a reaction may be defined as the sum of the exponents to which the concentration terms in the rate law are raised to express the observed rate of reaction.
From general equation of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\], the rate expression can be written as, \[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\].
\[{\rm{a}}\] and \[{\rm{b}}\]are called the orders of the reaction with respect to \[{\rm{A}}\]and \[{\rm{B}}\]. Depending on whether \[{\rm{(a + b)}}\]is equal to \[{\rm{0,1,2, or 3}}\], the reactions are said to be of zero order, first order, second order, and third order respectively.
Complete Step by Step Solution:
Rate equation may be defined as the relationship between the concentrations of the reactants and the observed reaction rate. Each reaction has its own rate equation which may be determined experimentally by altering the concentration of the reactants and then measuring the change in rate.
Consider a general reaction of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\]
The reaction rate is usually proportional to the concentrations of the reactants \[{\rm{[A]}}\] and \[{\rm{[B]}}\] which are raised to powers \[{\rm{a}}\] and \[{\rm{b}}\] respectively. The rate expression can, then be written as:
\[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\], where \[{{\rm{k}}_{\rm{r}}} = \]rate constant.
As per given data,
The equation is as: \[{\rm{2A + B}} \to {\rm{C + D}}\]
Suppose the rate equation is, \[{\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\]
where, \[{\rm{a}}\] and \[{\rm{b}}\]are the orders with respect to \[{\rm{[A]}}\] and \[{\rm{[B]}}\]
Substituting the given values in the rate equation we get,
\[{\rm{(rate) I 6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
\[{\rm{(rate) II 2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.2)}}^{\rm{b}}}\]
\[{\rm{(rate) III 1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
Dividing experiment (I) by experiment (II) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.2)}}}^{\rm{b}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{\rm{1}}}{{\rm{4}}}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow {\rm{b = 2}}$
So, order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\].
Also, dividing experiment (I) by experiment (III) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{\rm{1}}}{2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^1}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\ $
$\Rightarrow {\rm{a = 1}}$
So, order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\].
Again, dividing experiment (I) by experiment (IV) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (X}}{{\rm{)}}^1}{{(0.2)}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = }}\dfrac{{0.001}}{{0.04{\rm{X}}}}\\ $
$\Rightarrow {\rm{X}} = \dfrac{{12 \times 0.001}}{{1 \times 0.04}}\\$
$ \Rightarrow {\rm{X}} = \dfrac{{0.012}}{{0.04}}\\$
$ \Rightarrow {\rm{X}} = 0.3$
Hence, the value of X is found to be \[{\rm{0}}{\rm{.3}}\]
Finally, dividing experiment (I) by experiment (V) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.3}}{{\rm{)}}^1}{{({\rm{Y}})}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = }}\dfrac{{0.001}}{{0.3{{\rm{Y}}^{\rm{2}}}}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{48 \times 0.001}}{{1 \times 0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{0.048}}{{0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = 0.16\\\Rightarrow {{\rm{Y}}^{\rm{2}}} = {(0.4)^2}\\ $
$\Rightarrow {\rm{Y}} = 0.4$
Hence, the value of Y is found to be \[0.4\]
Therefore, option (2) is correct.
Note: The order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\]and the order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\]. The overall order for the reaction will be \[(1 + 2)\, = 3\]. This implies that the reaction is of third order overall. Also, the units of rate constant (\[{\rm{k}}\]) for the given reaction can be calculated.
${\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^1}{{\rm{[B]}}^2}\\ $
$\Rightarrow {\rm{k}} = \dfrac{{{\rm{rate}}}}{{{{{\rm{[A]}}}^{\rm{1}}}{{{\rm{[B]}}}^{\rm{2}}}}}\\ \Rightarrow {\rm{k}} = \dfrac{{{\rm{mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}}}{{{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{1}}}{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{2}}}}}\\$
$ \Rightarrow {\rm{k}} = {\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}$
The units of rate constant is found to be \[{\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\].
From general equation of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\], the rate expression can be written as, \[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\].
\[{\rm{a}}\] and \[{\rm{b}}\]are called the orders of the reaction with respect to \[{\rm{A}}\]and \[{\rm{B}}\]. Depending on whether \[{\rm{(a + b)}}\]is equal to \[{\rm{0,1,2, or 3}}\], the reactions are said to be of zero order, first order, second order, and third order respectively.
Complete Step by Step Solution:
Rate equation may be defined as the relationship between the concentrations of the reactants and the observed reaction rate. Each reaction has its own rate equation which may be determined experimentally by altering the concentration of the reactants and then measuring the change in rate.
Consider a general reaction of the type: \[{\rm{aA}}\,\,{\rm{ + }}\,\,{\rm{bB}} \to {\rm{products}}\]
The reaction rate is usually proportional to the concentrations of the reactants \[{\rm{[A]}}\] and \[{\rm{[B]}}\] which are raised to powers \[{\rm{a}}\] and \[{\rm{b}}\] respectively. The rate expression can, then be written as:
\[{\rm{rate}}\,\, = \,{{\rm{k}}_{\rm{r}}}{{\rm{[A]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\], where \[{{\rm{k}}_{\rm{r}}} = \]rate constant.
As per given data,
The equation is as: \[{\rm{2A + B}} \to {\rm{C + D}}\]
Suppose the rate equation is, \[{\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^{\rm{a}}}{{\rm{[B]}}^{\rm{b}}}\]
where, \[{\rm{a}}\] and \[{\rm{b}}\]are the orders with respect to \[{\rm{[A]}}\] and \[{\rm{[B]}}\]
Substituting the given values in the rate equation we get,
\[{\rm{(rate) I 6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
\[{\rm{(rate) II 2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.2)}}^{\rm{b}}}\]
\[{\rm{(rate) III 1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}} = {\rm{k (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}{{\rm{(0}}{\rm{.1)}}^{\rm{b}}}\]
Dividing experiment (I) by experiment (II) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{2}}{\rm{.40}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}{{\not{{\rm{k}}}{\rm{ }}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{a}}}}}{{{\rm{(0}}{\rm{.2)}}}^{\rm{b}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = \dfrac{{\rm{1}}}{{\rm{4}}}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{II}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{b}}}\\ $
$\Rightarrow {\rm{b = 2}}$
So, order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\].
Also, dividing experiment (I) by experiment (III) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{1}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.2}}{{\rm{)}}^{\rm{a}}}\not{{{{{\rm{(0}}{\rm{.1)}}}^{\rm{b}}}}}}}\\ $
$\Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = \dfrac{{\rm{1}}}{2}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{III}}}} = {(\dfrac{{\rm{1}}}{2}{\rm{)}}^1}{\rm{ = (}}\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{)}}^{\rm{a}}}\\ $
$\Rightarrow {\rm{a = 1}}$
So, order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\].
Again, dividing experiment (I) by experiment (IV) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{{\rm{7}}{\rm{.20}} \times {\rm{1}}{{\rm{0}}^{ - 2}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (X}}{{\rm{)}}^1}{{(0.2)}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{IV}}}} = \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = (}}\dfrac{{0.1}}{{\rm{X}}}{\rm{)(}}\dfrac{{0.01}}{{0.04}}{\rm{)}}\\ $
$\Rightarrow \dfrac{{\rm{1}}}{{12}}{\rm{ = }}\dfrac{{0.001}}{{0.04{\rm{X}}}}\\ $
$\Rightarrow {\rm{X}} = \dfrac{{12 \times 0.001}}{{1 \times 0.04}}\\$
$ \Rightarrow {\rm{X}} = \dfrac{{0.012}}{{0.04}}\\$
$ \Rightarrow {\rm{X}} = 0.3$
Hence, the value of X is found to be \[{\rm{0}}{\rm{.3}}\]
Finally, dividing experiment (I) by experiment (V) we get,
$\dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{{\rm{6}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}{{2.88 \times {\rm{1}}{{\rm{0}}^{ - 1}}}} = \dfrac{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.1}}{{\rm{)}}^1}{{{\rm{(0}}{\rm{.1)}}}^2}}}{{\not{{\rm{k}}}{\rm{ (0}}{\rm{.3}}{{\rm{)}}^1}{{({\rm{Y}})}^2}}}\\$
$ \Rightarrow \dfrac{{{\rm{exp}}\,\,{\rm{I}}}}{{{\rm{exp}}\,\,{\rm{V}}}} = \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = (}}\dfrac{{0.1}}{{0.3}}{\rm{)(}}\dfrac{{0.01}}{{{{\rm{Y}}^{\rm{2}}}}}{\rm{)}}\\$
$ \Rightarrow \dfrac{{\rm{1}}}{{48}}{\rm{ = }}\dfrac{{0.001}}{{0.3{{\rm{Y}}^{\rm{2}}}}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{48 \times 0.001}}{{1 \times 0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = \dfrac{{0.048}}{{0.3}}\\ $
$\Rightarrow {{\rm{Y}}^{\rm{2}}} = 0.16\\\Rightarrow {{\rm{Y}}^{\rm{2}}} = {(0.4)^2}\\ $
$\Rightarrow {\rm{Y}} = 0.4$
Hence, the value of Y is found to be \[0.4\]
Therefore, option (2) is correct.
Note: The order with respect to \[{\rm{[A]}}\]is \[{\rm{1}}\]and the order with respect to \[{\rm{[B]}}\] is \[{\rm{2}}\]. The overall order for the reaction will be \[(1 + 2)\, = 3\]. This implies that the reaction is of third order overall. Also, the units of rate constant (\[{\rm{k}}\]) for the given reaction can be calculated.
${\rm{rate}}\,\, = \,{\rm{k[A}}{{\rm{]}}^1}{{\rm{[B]}}^2}\\ $
$\Rightarrow {\rm{k}} = \dfrac{{{\rm{rate}}}}{{{{{\rm{[A]}}}^{\rm{1}}}{{{\rm{[B]}}}^{\rm{2}}}}}\\ \Rightarrow {\rm{k}} = \dfrac{{{\rm{mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}}}{{{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{1}}}{{{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}}^{\rm{2}}}}}\\$
$ \Rightarrow {\rm{k}} = {\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}$
The units of rate constant is found to be \[{\rm{mo}}{{\rm{l}}^{ - 2}}{{\rm{L}}^2}{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\].
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
