
The reading of the Centigrade thermometer coincides with that of the Fahrenheit thermometer in a liquid. The temperature of the liquid is:
A) $ - 40^\circ C$
B) $0^\circ C$
C) $100^\circ C$
D) $300^\circ C$
Answer
218.1k+ views
Hint: Centigrade and Fahrenheit scales are both temperatures measuring scales.
In centigrade the freezing point of water is taken as the reference point for centigrade scale the freezing point of water is taken as $0^\circ C$ and boiling point of water is taken as $100^\circ C$ and the distance between these two points is divided into 100 equal divisions
In the Fahrenheit scale, the freezing point of water is labelled as $32^\circ F$ and boiling point of water is taken as $212^\circ F$ and the distance between these two points is divided into 180 equal divisions.
Complete step by step solution:
As we know that in the Centigrade scale the distance between the freezing and boiling point of water is divided into 100 equal units and in the Fahrenheit scale the same distance is divided into 180 equal units
So we can say that the in one scale same temp difference is divided into 100 units and on other it is divided into 180 equal units
So it can be written as
$
180^\circ F = 100^\circ C \\
or,\dfrac{{180^\circ F}}{{100^\circ C}} = 1 \\
\Rightarrow \dfrac{{9^\circ F}}{{5^\circ C}} = 1 \\
$
From here it is clear that a temperature increase of 9 Fahrenheit degrees is equivalent to an increase of 5 Celsius degrees.
Now as the freezing point of water in Centigrade scale is taken as $0^\circ C$ and $32^\circ F$ in Fahrenheit scale we can write its as
$ 5^\circ F = 9^\circ C + 32 \\
\Rightarrow ^\circ F = \dfrac{9}{5}\left( {^\circ C} \right) + 32 $
Now this comes out to be the relation between both scales.
In the question, it is asked as to when the reading of two scales will coincide or in other words when the two thermometers will show the same temperature reading.
For that let the temperature reading on both the scale be $x$.
\[
\Rightarrow x = \dfrac{9}{5}x + 32 \\
\Rightarrow 5x = 9x + 160 \\
\Rightarrow 5x - 9x = 160 \\
\therefore x = - 40^\circ C \\
\]
Final answer is (A), The reading of both thermometers will coincide at $ - 40^\circ C$.
Note: While solving the equation the signs are to be taken care of.
All the temperature scales are made for temperature measurement and take various reference points for their calibration.
The SI unit of temperature measurement is Kelvin (K).
In centigrade the freezing point of water is taken as the reference point for centigrade scale the freezing point of water is taken as $0^\circ C$ and boiling point of water is taken as $100^\circ C$ and the distance between these two points is divided into 100 equal divisions
In the Fahrenheit scale, the freezing point of water is labelled as $32^\circ F$ and boiling point of water is taken as $212^\circ F$ and the distance between these two points is divided into 180 equal divisions.
Complete step by step solution:
As we know that in the Centigrade scale the distance between the freezing and boiling point of water is divided into 100 equal units and in the Fahrenheit scale the same distance is divided into 180 equal units
So we can say that the in one scale same temp difference is divided into 100 units and on other it is divided into 180 equal units
So it can be written as
$
180^\circ F = 100^\circ C \\
or,\dfrac{{180^\circ F}}{{100^\circ C}} = 1 \\
\Rightarrow \dfrac{{9^\circ F}}{{5^\circ C}} = 1 \\
$
From here it is clear that a temperature increase of 9 Fahrenheit degrees is equivalent to an increase of 5 Celsius degrees.
Now as the freezing point of water in Centigrade scale is taken as $0^\circ C$ and $32^\circ F$ in Fahrenheit scale we can write its as
$ 5^\circ F = 9^\circ C + 32 \\
\Rightarrow ^\circ F = \dfrac{9}{5}\left( {^\circ C} \right) + 32 $
Now this comes out to be the relation between both scales.
In the question, it is asked as to when the reading of two scales will coincide or in other words when the two thermometers will show the same temperature reading.
For that let the temperature reading on both the scale be $x$.
\[
\Rightarrow x = \dfrac{9}{5}x + 32 \\
\Rightarrow 5x = 9x + 160 \\
\Rightarrow 5x - 9x = 160 \\
\therefore x = - 40^\circ C \\
\]
Final answer is (A), The reading of both thermometers will coincide at $ - 40^\circ C$.
Note: While solving the equation the signs are to be taken care of.
All the temperature scales are made for temperature measurement and take various reference points for their calibration.
The SI unit of temperature measurement is Kelvin (K).
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

