
The ratio between the root mean square velocity of ${H_2}$ at 50K and that of ${O_2}$ at 800K is:
(a) 0.25
(b) 1
(c) 2
(d) 4
Answer
219.9k+ views
Hint: The root mean square velocity is the measure of the speed of a particle in a gas. We can solve the above problem by using the formula $\sqrt {\dfrac{{3RT}}{M}} $
Complete step by step answer:
1: The root mean square velocity or ${v_{rms}}$ is directly proportional to the square root of temperature and is inversely proportional to the square root of molecular weight.
2: Now, we calculate ${v_{rms}}$ of ${H_2}$ at 50K using the formula $\sqrt {\dfrac{{3RT}}{M}} $
Where, R is the universal gas constant (8.314 J mol-1 K-1 )
T is the temperature, here it is 50K
M is the molecular mass which is 2 g/mol for H2
∴ ${v_{rms}}$for ${H_2}$ is $ = \sqrt {\dfrac{{3R \times 50}}{2}} $
$ \Rightarrow {v_{{H_2}}} = \sqrt {75R} $
(Since R is common in both and we need to calculate the ratio, we will leave it as R for simplicity and it will get cancelled at the end.)
3: Similarly,${v_{rms}}$for ${O_2}$ is $ = \sqrt {\dfrac{{3R \times 800}}{{32}}} $ (Since molecular mass of ${O_2}$ IS 32 g/mol)
$ \Rightarrow {v_{{O_2}}} = \sqrt {75R} $
4: Now taking the ratio between ${v_{{H_2}}}$ and ${v_{{O_2}}}$ , we get:
$
\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \dfrac{{\sqrt {75R} }}{{\sqrt {75R} }} \\
\Rightarrow\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = 1 \\
$
Thus, the correct option is (a).
Note:
We mostly use ${v_{rms}}$instead of${v_{avg}}$because for a typical gas sample, the net velocity is zero. This is because the particles are moving randomly constantly in all directions. This is a key formula as the velocity of the particles is what determines both the diffusion and effusion rates. The faster the root mean square velocity, the faster the diffusion. Effusion occurs by a difference of pressures while diffusion occurs due to difference in concentrations.
Complete step by step answer:
1: The root mean square velocity or ${v_{rms}}$ is directly proportional to the square root of temperature and is inversely proportional to the square root of molecular weight.
2: Now, we calculate ${v_{rms}}$ of ${H_2}$ at 50K using the formula $\sqrt {\dfrac{{3RT}}{M}} $
Where, R is the universal gas constant (8.314 J mol-1 K-1 )
T is the temperature, here it is 50K
M is the molecular mass which is 2 g/mol for H2
∴ ${v_{rms}}$for ${H_2}$ is $ = \sqrt {\dfrac{{3R \times 50}}{2}} $
$ \Rightarrow {v_{{H_2}}} = \sqrt {75R} $
(Since R is common in both and we need to calculate the ratio, we will leave it as R for simplicity and it will get cancelled at the end.)
3: Similarly,${v_{rms}}$for ${O_2}$ is $ = \sqrt {\dfrac{{3R \times 800}}{{32}}} $ (Since molecular mass of ${O_2}$ IS 32 g/mol)
$ \Rightarrow {v_{{O_2}}} = \sqrt {75R} $
4: Now taking the ratio between ${v_{{H_2}}}$ and ${v_{{O_2}}}$ , we get:
$
\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \dfrac{{\sqrt {75R} }}{{\sqrt {75R} }} \\
\Rightarrow\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = 1 \\
$
Thus, the correct option is (a).
Note:
We mostly use ${v_{rms}}$instead of${v_{avg}}$because for a typical gas sample, the net velocity is zero. This is because the particles are moving randomly constantly in all directions. This is a key formula as the velocity of the particles is what determines both the diffusion and effusion rates. The faster the root mean square velocity, the faster the diffusion. Effusion occurs by a difference of pressures while diffusion occurs due to difference in concentrations.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

