
The ratio between the root mean square velocity of ${H_2}$ at 50K and that of ${O_2}$ at 800K is:
(a) 0.25
(b) 1
(c) 2
(d) 4
Answer
131.4k+ views
Hint: The root mean square velocity is the measure of the speed of a particle in a gas. We can solve the above problem by using the formula $\sqrt {\dfrac{{3RT}}{M}} $
Complete step by step answer:
1: The root mean square velocity or ${v_{rms}}$ is directly proportional to the square root of temperature and is inversely proportional to the square root of molecular weight.
2: Now, we calculate ${v_{rms}}$ of ${H_2}$ at 50K using the formula $\sqrt {\dfrac{{3RT}}{M}} $
Where, R is the universal gas constant (8.314 J mol-1 K-1 )
T is the temperature, here it is 50K
M is the molecular mass which is 2 g/mol for H2
∴ ${v_{rms}}$for ${H_2}$ is $ = \sqrt {\dfrac{{3R \times 50}}{2}} $
$ \Rightarrow {v_{{H_2}}} = \sqrt {75R} $
(Since R is common in both and we need to calculate the ratio, we will leave it as R for simplicity and it will get cancelled at the end.)
3: Similarly,${v_{rms}}$for ${O_2}$ is $ = \sqrt {\dfrac{{3R \times 800}}{{32}}} $ (Since molecular mass of ${O_2}$ IS 32 g/mol)
$ \Rightarrow {v_{{O_2}}} = \sqrt {75R} $
4: Now taking the ratio between ${v_{{H_2}}}$ and ${v_{{O_2}}}$ , we get:
$
\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \dfrac{{\sqrt {75R} }}{{\sqrt {75R} }} \\
\Rightarrow\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = 1 \\
$
Thus, the correct option is (a).
Note:
We mostly use ${v_{rms}}$instead of${v_{avg}}$because for a typical gas sample, the net velocity is zero. This is because the particles are moving randomly constantly in all directions. This is a key formula as the velocity of the particles is what determines both the diffusion and effusion rates. The faster the root mean square velocity, the faster the diffusion. Effusion occurs by a difference of pressures while diffusion occurs due to difference in concentrations.
Complete step by step answer:
1: The root mean square velocity or ${v_{rms}}$ is directly proportional to the square root of temperature and is inversely proportional to the square root of molecular weight.
2: Now, we calculate ${v_{rms}}$ of ${H_2}$ at 50K using the formula $\sqrt {\dfrac{{3RT}}{M}} $
Where, R is the universal gas constant (8.314 J mol-1 K-1 )
T is the temperature, here it is 50K
M is the molecular mass which is 2 g/mol for H2
∴ ${v_{rms}}$for ${H_2}$ is $ = \sqrt {\dfrac{{3R \times 50}}{2}} $
$ \Rightarrow {v_{{H_2}}} = \sqrt {75R} $
(Since R is common in both and we need to calculate the ratio, we will leave it as R for simplicity and it will get cancelled at the end.)
3: Similarly,${v_{rms}}$for ${O_2}$ is $ = \sqrt {\dfrac{{3R \times 800}}{{32}}} $ (Since molecular mass of ${O_2}$ IS 32 g/mol)
$ \Rightarrow {v_{{O_2}}} = \sqrt {75R} $
4: Now taking the ratio between ${v_{{H_2}}}$ and ${v_{{O_2}}}$ , we get:
$
\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \dfrac{{\sqrt {75R} }}{{\sqrt {75R} }} \\
\Rightarrow\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = 1 \\
$
Thus, the correct option is (a).
Note:
We mostly use ${v_{rms}}$instead of${v_{avg}}$because for a typical gas sample, the net velocity is zero. This is because the particles are moving randomly constantly in all directions. This is a key formula as the velocity of the particles is what determines both the diffusion and effusion rates. The faster the root mean square velocity, the faster the diffusion. Effusion occurs by a difference of pressures while diffusion occurs due to difference in concentrations.
Recently Updated Pages
Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

The specific heat of metal is 067 Jg Its equivalent class 11 chemistry JEE_Main

The increasing order of a specific charge to mass ratio class 11 chemistry JEE_Main

Which one of the following is used for making shoe class 11 chemistry JEE_Main

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Which among the following is the softest metal A Platinum class 11 chemistry JEE_Main

Calculate CFSE of the following complex FeCN64 A 04Delta class 11 chemistry JEE_Main

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF
