
The radius of a circular loop is r and a current i is flowing in it. The equivalent magnetic moment will be
a) $ir$
b) $2\pi ir$
c) $\pi i{r^2}$
d) $\dfrac{1}{{{r^2}}}$
Answer
163.8k+ views
Hint: In order to solve this question, firstly we should know that magnetic monet of an object is the ability to align itself in the presence of externa magnetic field and here we wil derive magnetic moment due to current carrying circular loop.
Formula used:
The magnetic moment due to current carrying loop of area A and number of turns N and having current i is calculated using formula:
$M = NiA$
Complete answer:
The magnetic moment of a current carrying loop can be represented by the equation $m = nIA$, where n is the number of turns, I is the current, and A is the area of the loop.
As the loop is circular, the area can be represented by $\pi r^2$, where r is the radius of the circular loop.
As there is only one turn in the loop, the equation becomes $m = I\pi r^2$
The correct answer is option c) $\pi i{r^2}$, as it matches with the equation of magnetic moment of current carrying loop.
Additional Information:
In physics, the magnetic moment of a circular coil is a measure of the strength of the magnetic field it produces. It is a vector quantity, equal to the product of the current flowing through the coil and the area of the coil. The magnetic moment is also directly proportional to the number of turns in the coil. It is also proportional to the current and area of the coil.
The direction of the magnetic moment is perpendicular to the plane of the coil, and points outwards from the centre of the coil. The magnitude of the magnetic moment is measured in units of ampere-metre square.
A circular coil with a larger area will produce a greater magnetic moment than a coil with a smaller area. likewise, a coil with more turns will have a greater magnetic moment than a coil with fewer turns.
The magnetic moment of a circular coil can be used to calculate the strength of the magnetic field it produces. The magnetic field is also directly proportional to the magnetic moment.
Note: Always remember the basic formula of magnetic moment and you can drive for any kind of lop and also don’t forget to mention number of turns it’s not always that there will be only one turn and in some problems it may given fe number of turns so don’t forget to keep N in the magnetic moment formula.
Formula used:
The magnetic moment due to current carrying loop of area A and number of turns N and having current i is calculated using formula:
$M = NiA$
Complete answer:
The magnetic moment of a current carrying loop can be represented by the equation $m = nIA$, where n is the number of turns, I is the current, and A is the area of the loop.
As the loop is circular, the area can be represented by $\pi r^2$, where r is the radius of the circular loop.
As there is only one turn in the loop, the equation becomes $m = I\pi r^2$
The correct answer is option c) $\pi i{r^2}$, as it matches with the equation of magnetic moment of current carrying loop.
Additional Information:
In physics, the magnetic moment of a circular coil is a measure of the strength of the magnetic field it produces. It is a vector quantity, equal to the product of the current flowing through the coil and the area of the coil. The magnetic moment is also directly proportional to the number of turns in the coil. It is also proportional to the current and area of the coil.
The direction of the magnetic moment is perpendicular to the plane of the coil, and points outwards from the centre of the coil. The magnitude of the magnetic moment is measured in units of ampere-metre square.
A circular coil with a larger area will produce a greater magnetic moment than a coil with a smaller area. likewise, a coil with more turns will have a greater magnetic moment than a coil with fewer turns.
The magnetic moment of a circular coil can be used to calculate the strength of the magnetic field it produces. The magnetic field is also directly proportional to the magnetic moment.
Note: Always remember the basic formula of magnetic moment and you can drive for any kind of lop and also don’t forget to mention number of turns it’s not always that there will be only one turn and in some problems it may given fe number of turns so don’t forget to keep N in the magnetic moment formula.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
