
The radius of a circular loop is r and a current i is flowing in it. The equivalent magnetic moment will be
a) $ir$
b) $2\pi ir$
c) $\pi i{r^2}$
d) $\dfrac{1}{{{r^2}}}$
Answer
186.9k+ views
Hint: In order to solve this question, firstly we should know that magnetic monet of an object is the ability to align itself in the presence of externa magnetic field and here we wil derive magnetic moment due to current carrying circular loop.
Formula used:
The magnetic moment due to current carrying loop of area A and number of turns N and having current i is calculated using formula:
$M = NiA$
Complete answer:
The magnetic moment of a current carrying loop can be represented by the equation $m = nIA$, where n is the number of turns, I is the current, and A is the area of the loop.
As the loop is circular, the area can be represented by $\pi r^2$, where r is the radius of the circular loop.
As there is only one turn in the loop, the equation becomes $m = I\pi r^2$
The correct answer is option c) $\pi i{r^2}$, as it matches with the equation of magnetic moment of current carrying loop.
Additional Information:
In physics, the magnetic moment of a circular coil is a measure of the strength of the magnetic field it produces. It is a vector quantity, equal to the product of the current flowing through the coil and the area of the coil. The magnetic moment is also directly proportional to the number of turns in the coil. It is also proportional to the current and area of the coil.
The direction of the magnetic moment is perpendicular to the plane of the coil, and points outwards from the centre of the coil. The magnitude of the magnetic moment is measured in units of ampere-metre square.
A circular coil with a larger area will produce a greater magnetic moment than a coil with a smaller area. likewise, a coil with more turns will have a greater magnetic moment than a coil with fewer turns.
The magnetic moment of a circular coil can be used to calculate the strength of the magnetic field it produces. The magnetic field is also directly proportional to the magnetic moment.
Note: Always remember the basic formula of magnetic moment and you can drive for any kind of lop and also don’t forget to mention number of turns it’s not always that there will be only one turn and in some problems it may given fe number of turns so don’t forget to keep N in the magnetic moment formula.
Formula used:
The magnetic moment due to current carrying loop of area A and number of turns N and having current i is calculated using formula:
$M = NiA$
Complete answer:
The magnetic moment of a current carrying loop can be represented by the equation $m = nIA$, where n is the number of turns, I is the current, and A is the area of the loop.
As the loop is circular, the area can be represented by $\pi r^2$, where r is the radius of the circular loop.
As there is only one turn in the loop, the equation becomes $m = I\pi r^2$
The correct answer is option c) $\pi i{r^2}$, as it matches with the equation of magnetic moment of current carrying loop.
Additional Information:
In physics, the magnetic moment of a circular coil is a measure of the strength of the magnetic field it produces. It is a vector quantity, equal to the product of the current flowing through the coil and the area of the coil. The magnetic moment is also directly proportional to the number of turns in the coil. It is also proportional to the current and area of the coil.
The direction of the magnetic moment is perpendicular to the plane of the coil, and points outwards from the centre of the coil. The magnitude of the magnetic moment is measured in units of ampere-metre square.
A circular coil with a larger area will produce a greater magnetic moment than a coil with a smaller area. likewise, a coil with more turns will have a greater magnetic moment than a coil with fewer turns.
The magnetic moment of a circular coil can be used to calculate the strength of the magnetic field it produces. The magnetic field is also directly proportional to the magnetic moment.
Note: Always remember the basic formula of magnetic moment and you can drive for any kind of lop and also don’t forget to mention number of turns it’s not always that there will be only one turn and in some problems it may given fe number of turns so don’t forget to keep N in the magnetic moment formula.
Recently Updated Pages
Uniform Acceleration: Definition, Equations & Graphs for JEE/NEET

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Electrical Resistance - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Wheatstone Bridge Explained: Principle, Working, and Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Centre of Mass of Hollow and Solid Hemisphere Explained

Average and RMS Value in Physics: Formula, Comparison & Application
