
The quadratic equations $2{x^2} - ({a^3} + 8a - 1)x + {a^2} - 4a = 0$ possess roots of opposite sign then
A. $a \leqslant 0$
B. $0 < a < 4$
C. $4 \leqslant a < 8$
D. $a \geqslant 8$
Answer
135.9k+ views
Hint: Here we will use the concept of product of roots and find the range of a in the quadratic equation.
Complete step-by-step answer:
Now we have been given a quadratic equation $2{x^2} - ({a^3} + 8a - 1)x + {a^2} - 4a = 0$
It’s been given that roots are of the opposite sign that one is negative and one is positive so their product should be negative obviously.
Formula for the product of roots is given as $\dfrac{c}{a}$and it should be negative.
Hence
\[\begin{gathered}
\dfrac{c}{a} < 0 \\
{\text{or }}\dfrac{{{a^2} - 4a}}{2} < 0 \Rightarrow {a^2} - 4a < 0 \\
\end{gathered} \]
We can write this down as $a(a - 4) < 0$.
This implies that $a \in (0,4)$.
Hence the correct option is (b).
Note: Whenever we come across such questions we simply need to recall the concept of sum and the product of roots, this concept helps reach the right answer.
Complete step-by-step answer:
Now we have been given a quadratic equation $2{x^2} - ({a^3} + 8a - 1)x + {a^2} - 4a = 0$
It’s been given that roots are of the opposite sign that one is negative and one is positive so their product should be negative obviously.
Formula for the product of roots is given as $\dfrac{c}{a}$and it should be negative.
Hence
\[\begin{gathered}
\dfrac{c}{a} < 0 \\
{\text{or }}\dfrac{{{a^2} - 4a}}{2} < 0 \Rightarrow {a^2} - 4a < 0 \\
\end{gathered} \]
We can write this down as $a(a - 4) < 0$.
This implies that $a \in (0,4)$.
Hence the correct option is (b).
Note: Whenever we come across such questions we simply need to recall the concept of sum and the product of roots, this concept helps reach the right answer.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 13 Statistics
