
The quadratic equation, whose roots are ${\sin ^2}{18^ \circ }$and ${\cos ^2}{36^ \circ }$, is
A. $16{x^2} - 12x + 1 = 0$
B. $16{x^2} + 12x + 1 = 0$
C. $16{x^2} - 12x - 1 = 0$
D. $16{x^2} + 10x + 1 = 0$
Answer
218.4k+ views
Hint: In the given question, to find the quadratic equation whose roots are given i.e., ${\sin ^2}{18^ \circ }$ and ${\cos ^2}{36^ \circ }$. Find the sum and product of the roots for this put the value of $\sin {18^ \circ }$ and $\cos {36^ \circ }$. Lastly put the required values in ${x^2} - Px + Q = 0$, at the place of $P$ write the value of sum and for $Q$ write the value of product.
Formula Used:
Quadratic equation –
${x^2} - Px + Q = 0$
Complete step by step solution:
Given that,
The roots of quadratic equation are ${\sin ^2}{18^ \circ }$ and ${\cos ^2}{36^ \circ }$
Quadratic equation will be,
${x^2} - Px + Q = 0$
Where $P$ and $Q$ are the sum and product of the roots respectively.
${x^2} - \left[ {{{\sin }^2}{{18}^ \circ } + {{\cos }^2}{{36}^ \circ }} \right]x + \left[ {{{\sin }^2}{{18}^ \circ } \times {{\cos }^2}{{36}^ \circ }} \right] = 0$
${x^2} - \left[ {{{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2} + {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \right]x + \left[ {{{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2} \times {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \right] = 0$
${x^2} - \left[ {\dfrac{1}{{16}}{{\left( {\sqrt 5 - 1} \right)}^2} + {{\left( {\sqrt 5 + 1} \right)}^2}} \right]x + {\left[ {\dfrac{{5 - 4}}{{16}}} \right]^2} = 0$
${x^2} - \left[ {\dfrac{3}{4}} \right]x + \left[ {\dfrac{1}{{16}}} \right] = 0$
$16{x^2} - 12x + 1 = 0$
Option ‘A’ is correct
Note: The key concept involved in solving this problem is the good knowledge of quadratic equations. Students must know that if roots are given then we can directly find the equation using ${x^2} - Px + Q = 0$where $P$ and $Q$ are the sum and product of the roots respectively. Likewise, if the equation is given as $a{x^2} + bx + c = 0$and we have to find the sum and product of roots we can find directly using Sum of roots $ = \dfrac{{ - b}}{a}$ and product $ = \dfrac{c}{a}$.
Formula Used:
Quadratic equation –
${x^2} - Px + Q = 0$
Complete step by step solution:
Given that,
The roots of quadratic equation are ${\sin ^2}{18^ \circ }$ and ${\cos ^2}{36^ \circ }$
Quadratic equation will be,
${x^2} - Px + Q = 0$
Where $P$ and $Q$ are the sum and product of the roots respectively.
${x^2} - \left[ {{{\sin }^2}{{18}^ \circ } + {{\cos }^2}{{36}^ \circ }} \right]x + \left[ {{{\sin }^2}{{18}^ \circ } \times {{\cos }^2}{{36}^ \circ }} \right] = 0$
${x^2} - \left[ {{{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2} + {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \right]x + \left[ {{{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2} \times {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \right] = 0$
${x^2} - \left[ {\dfrac{1}{{16}}{{\left( {\sqrt 5 - 1} \right)}^2} + {{\left( {\sqrt 5 + 1} \right)}^2}} \right]x + {\left[ {\dfrac{{5 - 4}}{{16}}} \right]^2} = 0$
${x^2} - \left[ {\dfrac{3}{4}} \right]x + \left[ {\dfrac{1}{{16}}} \right] = 0$
$16{x^2} - 12x + 1 = 0$
Option ‘A’ is correct
Note: The key concept involved in solving this problem is the good knowledge of quadratic equations. Students must know that if roots are given then we can directly find the equation using ${x^2} - Px + Q = 0$where $P$ and $Q$ are the sum and product of the roots respectively. Likewise, if the equation is given as $a{x^2} + bx + c = 0$and we have to find the sum and product of roots we can find directly using Sum of roots $ = \dfrac{{ - b}}{a}$ and product $ = \dfrac{c}{a}$.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

