
The probability of the product of a perfect square when $2$ dice are thrown together is
1. $\dfrac{2}{9}$
2. $\dfrac{1}{9}$
3. $\dfrac{5}{{18}}$
4. None of these
Answer
232.5k+ views
Hint: In this question, we have to find the probability product of a perfect square. Here, two dice are thrown which means the number of possible outcomes will be $36$. Now from the sample space find those numbers whose product will be a perfect square and use the probability formula.
Formula Used:
$Probability = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}$
Complete step by step Solution:
Given that,
Two dice are thrown together. Therefore, the sample space will be
Number of possible outcomes$ = 36$
Product of perfect squares are $\left\{ {\left( {1,1} \right),\left( {2,2} \right),\left( {4,1} \right),\left( {1,4} \right),\left( {3,3} \right),\left( {4,4} \right),\left( {5,5} \right),\left( {6,6} \right)} \right\}$
Number of favourable outcomes $ = 8$
Hence, $P\left( {Product{\text{ }}of{\text{ }}perfect{\text{ }}squares} \right) = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}$
$P\left( {Product{\text{ }}of{\text{ }}perfect{\text{ }}squares} \right) = \dfrac{8}{{36}} = \dfrac{2}{9}$
Hence, the correct option is (1).
Note: In such type of problem, we must first determine the total number of possible outcomes (in this case, the total number of possible outcomes when two dice are thrown) and then determine the number of favourable outcomes (in this case, product of perfect square), after which we can directly apply the probability formula to determine the probability of receiving a favourable outcome, i.e., $Probability = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}$.
Formula Used:
$Probability = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}$
Complete step by step Solution:
Given that,
Two dice are thrown together. Therefore, the sample space will be
| $\left( {a,b} \right)$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ |
| $1$ | $\left( {1,1} \right)$ | $\left( {1,2} \right)$ | $\left( {1,3} \right)$ | $\left( {1,4} \right)$ | $\left( {1,5} \right)$ | $\left( {1,6} \right)$ |
| $2$ | $\left( {2,1} \right)$ | $\left( {2,2} \right)$ | $\left( {2,3} \right)$ | $\left( {2,4} \right)$ | $\left( {2,5} \right)$ | $\left( {2,6} \right)$ |
| $3$ | $\left( {3,1} \right)$ | $\left( {3,2} \right)$ | $\left( {3,3} \right)$ | $\left( {3,4} \right)$ | $\left( {3,5} \right)$ | $\left( {3,6} \right)$ |
| $4$ | $\left( {4,1} \right)$ | $\left( {4,2} \right)$ | $\left( {4,3} \right)$ | $\left( {4,4} \right)$ | $\left( {4,5} \right)$ | $\left( {4,6} \right)$ |
| $5$ | $\left( {5,1} \right)$ | $\left( {5,2} \right)$ | $\left( {5,3} \right)$ | $\left( {5,4} \right)$ | $\left( {5,5} \right)$ | $\left( {5,6} \right)$ |
| $6$ | $\left( {6,1} \right)$ | $\left( {6,2} \right)$ | $\left( {6,3} \right)$ | $\left( {6,4} \right)$ | $\left( {6,5} \right)$ | $\left( {6,6} \right)$ |
Number of possible outcomes$ = 36$
Product of perfect squares are $\left\{ {\left( {1,1} \right),\left( {2,2} \right),\left( {4,1} \right),\left( {1,4} \right),\left( {3,3} \right),\left( {4,4} \right),\left( {5,5} \right),\left( {6,6} \right)} \right\}$
Number of favourable outcomes $ = 8$
Hence, $P\left( {Product{\text{ }}of{\text{ }}perfect{\text{ }}squares} \right) = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}$
$P\left( {Product{\text{ }}of{\text{ }}perfect{\text{ }}squares} \right) = \dfrac{8}{{36}} = \dfrac{2}{9}$
Hence, the correct option is (1).
Note: In such type of problem, we must first determine the total number of possible outcomes (in this case, the total number of possible outcomes when two dice are thrown) and then determine the number of favourable outcomes (in this case, product of perfect square), after which we can directly apply the probability formula to determine the probability of receiving a favourable outcome, i.e., $Probability = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

