
The power of $x$ in the term with the greatest coefficient in the expansion of ${\left( {1 - \dfrac{x}{2}} \right)^{10}}$ is
A. 2
B. 3
C. 4
D. 5
E. 6
Answer
161.1k+ views
Hint: In this question, we are given an expression ${\left( {1 - \dfrac{x}{2}} \right)^{10}}$. We have to find the highest power of $x$ with the greatest coefficient. Apply binomial distribution and expand the expression. Then, use combination and solve further to calculate the highest coefficient.
Formula used:
Binomial theorem –
${\left( {x + y} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}{x^{n - r}}{y^r}} $
Combination formula –
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times - - - - $
Complete step-by-step solution:
Given expression,
${\left( {1 - \dfrac{x}{2}} \right)^{10}}$
Using binomial theorem,
\[{\left( {1 - \dfrac{x}{2}} \right)^{10}} = {}^{10}{C_0}{\left( 1 \right)^{10}}{\left( {\dfrac{x}{2}} \right)^0} + {}^{10}{C_1}{\left( 1 \right)^9}{\left( {\dfrac{x}{2}} \right)^1} + {}^{10}{C_2}{\left( 1 \right)^8}{\left( {\dfrac{x}{2}} \right)^2} + {}^{10}{C_3}{\left( 1 \right)^7}{\left( {\dfrac{x}{2}} \right)^3} + {}^{10}{C_4}{\left( 1 \right)^6}{\left( {\dfrac{x}{2}} \right)^4} + {}^{10}{C_5}{\left( 1 \right)^5}{\left( {\dfrac{x}{2}} \right)^5} + - - - - - \]
\[ = 1 + \dfrac{{10!}}{{1!\left( {10 - 1} \right)!}}{\left( {\dfrac{x}{2}} \right)^1} + \dfrac{{10!}}{{2!\left( {10 - 2} \right)!}}\left( {\dfrac{{{x^2}}}{4}} \right) + \dfrac{{10!}}{{3!\left( {10 - 3} \right)!}}\left( {\dfrac{{{x^3}}}{8}} \right) + \dfrac{{10!}}{{4!\left( {10 - 4} \right)!}}\left( {\dfrac{{{x^4}}}{{16}}} \right) + \dfrac{{10!}}{{5!\left( {10 - 5} \right)!}}\left( {\dfrac{{{x^5}}}{{32}}} \right) + - - - - - \]
\[ = 1 + 5x + 11.25{x^2} + 15{x^3} + 13.13{x^4} + 7.88{x^5} + - - - - - - \]
Here, the highest coefficient is 15 in the given expression ${\left( {1 - \dfrac{x}{2}} \right)^{10}}$.
Therefore, the highest power is 3.
Hence, Option (B) is the correct answer i.e., 3.
Note: The key concept involved in solving this problem is the good knowledge of Binomial distribution. Students must remember that as the power increases, the expansion gets more difficult to compute. The Binomial Theorem can be used to easily calculate a binomial statement that has been raised to a very big power. The Binomial Theorem describes how to expand an expression raised to any finite power. A binomial theorem is a strong expansion technique that has applications in algebra, probability, and other fields.
Formula used:
Binomial theorem –
${\left( {x + y} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}{x^{n - r}}{y^r}} $
Combination formula –
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times - - - - $
Complete step-by-step solution:
Given expression,
${\left( {1 - \dfrac{x}{2}} \right)^{10}}$
Using binomial theorem,
\[{\left( {1 - \dfrac{x}{2}} \right)^{10}} = {}^{10}{C_0}{\left( 1 \right)^{10}}{\left( {\dfrac{x}{2}} \right)^0} + {}^{10}{C_1}{\left( 1 \right)^9}{\left( {\dfrac{x}{2}} \right)^1} + {}^{10}{C_2}{\left( 1 \right)^8}{\left( {\dfrac{x}{2}} \right)^2} + {}^{10}{C_3}{\left( 1 \right)^7}{\left( {\dfrac{x}{2}} \right)^3} + {}^{10}{C_4}{\left( 1 \right)^6}{\left( {\dfrac{x}{2}} \right)^4} + {}^{10}{C_5}{\left( 1 \right)^5}{\left( {\dfrac{x}{2}} \right)^5} + - - - - - \]
\[ = 1 + \dfrac{{10!}}{{1!\left( {10 - 1} \right)!}}{\left( {\dfrac{x}{2}} \right)^1} + \dfrac{{10!}}{{2!\left( {10 - 2} \right)!}}\left( {\dfrac{{{x^2}}}{4}} \right) + \dfrac{{10!}}{{3!\left( {10 - 3} \right)!}}\left( {\dfrac{{{x^3}}}{8}} \right) + \dfrac{{10!}}{{4!\left( {10 - 4} \right)!}}\left( {\dfrac{{{x^4}}}{{16}}} \right) + \dfrac{{10!}}{{5!\left( {10 - 5} \right)!}}\left( {\dfrac{{{x^5}}}{{32}}} \right) + - - - - - \]
\[ = 1 + 5x + 11.25{x^2} + 15{x^3} + 13.13{x^4} + 7.88{x^5} + - - - - - - \]
Here, the highest coefficient is 15 in the given expression ${\left( {1 - \dfrac{x}{2}} \right)^{10}}$.
Therefore, the highest power is 3.
Hence, Option (B) is the correct answer i.e., 3.
Note: The key concept involved in solving this problem is the good knowledge of Binomial distribution. Students must remember that as the power increases, the expansion gets more difficult to compute. The Binomial Theorem can be used to easily calculate a binomial statement that has been raised to a very big power. The Binomial Theorem describes how to expand an expression raised to any finite power. A binomial theorem is a strong expansion technique that has applications in algebra, probability, and other fields.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
