
The potential at a point due to an electric dipole will be maximum and minimum when the angles between the axis of the dipole and the line joining the point to the dipole are respectively
A. \[{90^0}\,and\,{\rm{ 18}}{{\rm{0}}^0}\]
B. \[{0^0}\,and\,{\rm{ 9}}{{\rm{0}}^0}\]
C. \[{90^0}\,and\,{\rm{ }}{{\rm{0}}^0}\]
D. \[{0^0}\,and\,{\rm{ 18}}{{\rm{0}}^0}\]
Answer
219k+ views
Hint:The values of maximum and minimum of the potential at a point due to an electric dipole will be determined by the angles like if \[\theta = {0^0},\cos \theta = 1\] then the electric potential will be maximum at the dipole axis and if \[\theta = {180^0},\cos \theta = - 1\] then the electric potential will be minimum at the dipole axis
Formula used:
The potential due to this dipole is given as,
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
Where,
p is dipole moment,
r is distance from dipole,
k is coulomb’s constant,\[k = \dfrac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}N{m^2}\] and \[{\varepsilon _0}\] is permittivity.
Complete step by step solution:
The potential due to this dipole is:
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
If \[\theta = {0^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {0^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the maximum potential,
\[{V_{\max }} = \dfrac{{kp}}{{{r^2}}}\]
Now If \[\theta = {180^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {{180}^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = - }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the minimum potential,
\[{V_{\min }} = - \dfrac{{kp}}{{{r^2}}}\]
Therefore the potential at a point due to an electric dipole will be maximum and minimum when the angles between the axis of the dipole and the line joining the point to the dipole are \[{0^0}\,and\,{\rm{ 18}}{{\rm{0}}^0}\].
Hence option D is the correct answer.
Note:The electric potential will be zero at the perpendicular axis of the dipole when \[\theta = {90^0}\] . As we know electric dipoles consist of two charges equal in magnitude (q) but opposite in nature one is a positive charge and other is a negative charge. Electric potential obeys superposition principle due to electric dipole as a whole can be sum of potential due to both the charges positive and negative.
Formula used:
The potential due to this dipole is given as,
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
Where,
p is dipole moment,
r is distance from dipole,
k is coulomb’s constant,\[k = \dfrac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}N{m^2}\] and \[{\varepsilon _0}\] is permittivity.
Complete step by step solution:
The potential due to this dipole is:
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
If \[\theta = {0^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {0^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the maximum potential,
\[{V_{\max }} = \dfrac{{kp}}{{{r^2}}}\]
Now If \[\theta = {180^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {{180}^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = - }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the minimum potential,
\[{V_{\min }} = - \dfrac{{kp}}{{{r^2}}}\]
Therefore the potential at a point due to an electric dipole will be maximum and minimum when the angles between the axis of the dipole and the line joining the point to the dipole are \[{0^0}\,and\,{\rm{ 18}}{{\rm{0}}^0}\].
Hence option D is the correct answer.
Note:The electric potential will be zero at the perpendicular axis of the dipole when \[\theta = {90^0}\] . As we know electric dipoles consist of two charges equal in magnitude (q) but opposite in nature one is a positive charge and other is a negative charge. Electric potential obeys superposition principle due to electric dipole as a whole can be sum of potential due to both the charges positive and negative.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

