
The pole strength of a bar magnet is $48$ ampere-metre and the distance between its poles is $25cm$.The moment of the couple by which it can be placed at an angle of ${30^o}$ with the uniform magnetic intensity of flux density \[0.15{\text{ }}N{A^{ - 1}}{m^{ - 1}}\] will be
(A) $12Nm$
(B) $18Nm$
(C) $0.9Nm$
(D) None of the above
Answer
216.3k+ views
Hint:
To solve this question, we will first find the magnetization M and then use the general torque formula we will solve for the moment of couple required for the bar magnet to place it in a given condition.
Formula Used:
The magnetization M, the strength of magnet m, and length between poles L is related as $M = m.L$
Torque or moment of the couple is related as $\tau = MB\sin \theta $ where B is magnetic flux density and $\theta $ is the angle at which the bar magnet is placed.
Complete step by step solution:
According to the question, we have given that $m = 48Am$, $L = 25cm = 25 \times {10^{ - 2}}m$ so, magnetization is given by $M = m.L$ on putting the values, we get
$M = 48 \times 25 \times {10^{ - 2}}A{m^2} \to (i)$
now, the torque acting on the bar magnetic can be calculated using the formula $\tau = MB\sin \theta $ and we have given that $B = 0.15N{A^{ - 1}}{m^{ - 1}}$ and $\sin \theta = \sin {30^o} = 0.5$ on putting these values we get,
$\tau = MB\sin \theta $ also using value from equation (i) we have,
$
\tau = 48 \times 25 \times 0.15 \times 0.5 \times {10^{ - 2}} \\
\tau = 0.9Nm \\
$
So, the moment of couple required to place the bar magnet is $0.9Nm$
Hence, the correct answer is option (C) $0.9Nm$
Therefore, the correct option is C.
Note:
It should be noted that in the formula of the moment of a couple $\tau = MB\sin \theta $, the magnetization and magnetic field density have the vector cross product and in vector form, it’s written as $\vec \tau = \vec M \times \vec B$, torque and moment of couples are just two words representing same meaning, they are not different.
To solve this question, we will first find the magnetization M and then use the general torque formula we will solve for the moment of couple required for the bar magnet to place it in a given condition.
Formula Used:
The magnetization M, the strength of magnet m, and length between poles L is related as $M = m.L$
Torque or moment of the couple is related as $\tau = MB\sin \theta $ where B is magnetic flux density and $\theta $ is the angle at which the bar magnet is placed.
Complete step by step solution:
According to the question, we have given that $m = 48Am$, $L = 25cm = 25 \times {10^{ - 2}}m$ so, magnetization is given by $M = m.L$ on putting the values, we get
$M = 48 \times 25 \times {10^{ - 2}}A{m^2} \to (i)$
now, the torque acting on the bar magnetic can be calculated using the formula $\tau = MB\sin \theta $ and we have given that $B = 0.15N{A^{ - 1}}{m^{ - 1}}$ and $\sin \theta = \sin {30^o} = 0.5$ on putting these values we get,
$\tau = MB\sin \theta $ also using value from equation (i) we have,
$
\tau = 48 \times 25 \times 0.15 \times 0.5 \times {10^{ - 2}} \\
\tau = 0.9Nm \\
$
So, the moment of couple required to place the bar magnet is $0.9Nm$
Hence, the correct answer is option (C) $0.9Nm$
Therefore, the correct option is C.
Note:
It should be noted that in the formula of the moment of a couple $\tau = MB\sin \theta $, the magnetization and magnetic field density have the vector cross product and in vector form, it’s written as $\vec \tau = \vec M \times \vec B$, torque and moment of couples are just two words representing same meaning, they are not different.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

